比的意义教学设计[集合]
在教学工作者开展教学活动前,有必要进行细致的教学设计准备工作,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。优秀的教学设计都具备一些什么特点呢?以下是小编为大家收集的比的意义教学设计,仅供参考,大家一起来看看吧。
比的意义教学设计1
教学目标:
1.使学生在现实的情境中,理解小数的意义,掌握小数的读写方法。
2.使学生经历小数意义的探索过程,积累数学活动的经验,进一步发展数感,培养观察、比较、抽象、概括以及合情推理的能力。
3.使学生能体会到小数与日常生活的密切联系,增强自主探索与合作交流的意识,树立学好数学的自信心。
教学重点、难点:
理解小数的意义,会正确读写小数。
教学过程:
一、导入
同学们,我们在三年级的时候就认识了这样的一些小数,今天这节课我们将进一步学习有关小数的知识,让我们一起来认识小数的意义和读写法。(板书课题)
二、回顾旧知,铺垫新知
1、(1)生活中,许多地方都能看到小数,你在那些地方看到过的?
(2)这些商品的价格你想了解一下吗?注意小数部分的读法,从左往右依次读出各个位上的数。
你能用角或分做单位说出下面物品的价钱吗?
2.旧知铺垫
以“元”为单位,3角用分数表示是几分之几元?你是怎么想的?
(1元是10角,1角是1元的十分之一,3角是1元的十分之三,所以3角就是十分之三元。)
用小数表示就是0.3元。
3.初步认识两位小数。
(1)5分和48分都是以什么为单位的?
如果以“元”为单位,1分用分数表示是几分之几元,用小数表示呢?你是怎么想的?(1元=100分,1分是1元的百分之一,就是1/100元,也就是0.01元。)
(2)5分用分数表示是多少元呢?48分呢?学生讨论
(3)学生汇报,教师根据学生回答完成板书。
(4)5分是( )元,你是怎么想的?(把1元平均分成100份,1分是1元的百分之一,5分就是1元的百分之五。)
百分之五元可以写成小数0.05元。
(5)48分是( )元,你是怎么想的?(把1元平均分成100份,1分是1元的百分之一,48分就是1元的.百分之四十八。)
百分之四十八元可以写成小数0.48元。
三、探究新知
1.理解一位小数的意义。1分米用分数表示是几分之几米?3分米用分数表示是几分之几米?你是怎么想的?
2.进一步理解两位小数的意义。
下面,我们请尺子来帮助我们认识小数。
(1)1厘米用分数表示是几分之几米?你是怎么想的?
(2)百分之一米用小数表示是多少?
(3)把4厘米和12厘米改写成以“米”作单位的分数和小数。
(4)观察一下,这二个小数都是把1米平均分成几份?表示其中的1份就是0.01米,表示其中的4份就是多少米?表示其中的12份呢?你是怎么想的?
3.自主探究三位小数的意义。
(1)拿出你的尺子,看一看1毫米有多长,(教师拿出一把米尺),我这里有一把米尺,想一想,1米等于多少毫米?1毫米用分数表示是几分之几米,用小数表示是多少米?你是怎么想的?
(3)0.001米小数点和1之间为什么要多写二个0?(因为1毫米是1米的千分之1,少二个0,就是十分之一了。)
(4)这几个小数跟前面的不太一样,你们能读准吗?学生齐读三位小数。
(5)观察一下,这三个小数都是把1米平均分成几份?表示其中的1份就是0.001米,表示其中的40份就是多少米?表示其中的105份呢?你还能想到什么?
4.
总结归纳小数的意义。
(1)看黑板,哪些是一位小数?哪些是两位小数?哪些是三位小数?
(2)从分数往小数看,什么样的分数可以用小数表示?(分母是10、100、1000……的分数都可以用小数表示。)
从小数往分数看,一位小数可以表示怎样的分数?两位小数?三位小数呢?
谁能连起来说说。
总结:分母是10、100、1000……的分数都可以用小数表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几,你还能想到什么?能说得完吗?这就是小数的意义。
(3)同桌互相说一说。
四、巩固拓深认知
1.试一试:
学生独立完成,并交流汇报。
(提示:7角3分可以看作多少分,这样改写就比较容易了。)
2.数形结合(练一练)。
请同学们看下面这些图,每个图形都表示整数“1”,第一个图是把什么看做整数“1”?将这个整数“1”平均分成了多少份?第二个图呢?第三个图呢?
学生自己填,再汇报。说说每题你是怎么想的?
观察这些图形,你还能想到哪些分数和小数?
判断这些小数各是几位小数?为什么?(小数部分有几位就是几位小数。)
3.练习四1
我们把整数“1”用一个正方形来表示,你能根据要求涂色,并填出相应的小数吗?
五、课堂小结
这节课你学了什么?
比的意义教学设计2
教学目标:
1、使学生初步认识百分数的应用,感悟百分数的意义,理解百分数和分数在意义上的不同点,体会百分数与比的知识的内在联系,能说出一个数是另一个数的百分之几,学会写百分数。
2、通过教学,培养学生的抽象、概括能力。
3、渗透事物是普通联系的,并且不断发展、变化的辩证唯物主义观点。
4、了解百分数在生活中的广泛用途。
教学重点:
理解百分数的意义
教学难点:
明确分数与百分数的联系与区别。
学生准备:
课前搜集生活中的百分数,通过查找资料,请教他人,知晓关于百分数的有关知识。
教学过程:
一、导入。
1.生活导入,板书课题。
上一周,白蒲镇组织了期中考试,周老师把白蒲小学六年级数学成绩做了一个简单的统计:
白蒲小学六年级数学期中考试,及格的人数占98%,高分人数占89.2%,有12%的同学进步很大。
(1)哪位同学愿意把这一句话读一读。
(2)再请哪位同学读一读。
(3)这句话中有3个特殊的数,你知道他们是什么数吗?(百分数)
对,他们是百分数。百分数在工农业生产和日常生活中有着广泛的运用。今天这一堂课,周老师就我同学们一起来认识百分数。板书课题--百分数的意义和写法。
二、寻找生活中的`百分数,感悟百分数的意义
1、寻找身边的百分数。
课前周老师请同学们寻找收集身边的百分数,都带来了吗?谁愿意介绍一下你寻找的百分数。
(1)衣服:棉60%,涤沦40%
(2)酒:酒精度42%。
x 【教材分析】
本课是人教版义务教育课程标准试验教科书小学数学五年级下册第四单元第一课时的内容。本课是在学生已经初步认识了分数的基础上进行教学的,是学生系统学习分数的开始,为后续学习分数的除法,真分数和假分数以及学习分数的基本性质、分数四则运算、分数应用题等打下坚实的基础。
【教学目标】
1.通过观察、归纳,明确单位“1”的概念,理解并掌握分数的意义,知道分数单位的含义。
2.通过分一分,涂一涂等不同形式的操作活动和小组内的交流活动,明确平均分的概念,理解分数的意义。
3.在探究分数的意义过程中,培养分析综合与抽象概括能力;感受分数与生活的密切联系。
【教学重点】
掌握单位“1”概念的建立。
【教学难点】
理解分数的意义
【教具】
实物投影,课件,作业纸。
【教学过程】
一、谈话导入,引出新知
课件出示数学书46页情境图,从图中你能知道哪些数学信息?
学生汇报预设:
学生1:在进行测量时,有时不能正好测量出整数的线段。
学生2:两个学生平分食物,每人只能得到1/2。
教师小结:是啊,像这样的测量、计算、分物的时候不能正好用整数表示的情形在生活中经常出现,为了解决这样的问题,古代人们就引出了新的计数方法——分数。关于分数,我们在三年级就已经初步接触过,今天我们进一步研究分数。(板书:分数的意义)
【设计意图】简洁谈话,自然引入,学生能够认识到分数产生的必要性,体会数学就在身边,随时应用于生活中。
二、自主概括,理解意义
师:下面我们一起来看几幅图,请大家用分数表示下面各图中的涂色部分,并说出每个分数各表示什么,先写出来,再同桌交流一下。
1.我们来汇报一下所填写的分数。
2.说说这些分数各表示什么?(学生说)
板书:把一个月饼平均分成4份,涂色部分表示这样的3份,就是3/4。
把一个正方形平均分成8份,涂色部分表示这样的5份,就是5/8。
把1米平均分成5份,涂色部分表示这样的3份,就是3/5。
把6个圆平均分成3份,涂色部分表示这样的1份,就是1/3。
3.图上这四个分数分别是把什么平均分得到的?(一个饼、一个长方形、1米、6个圆平均分得到的。)
教师说明:一个饼可以称为一个物体,一个长方形是一个图形,1米是一个计量单位,6个圆就是一个整体。
一个物体,一个图形,一个计量单位,许多物体组成的一个整体,都可以用自然数1来表示,通常我们把它叫做单位“1”,看屏幕,自己读一读。
问:单位“1”可以是什么?
4.那么,刚才这几幅图中我们分别是把什么看作单位“1”?把单位“1”平均分成了几份?表示这样的几份?
5.揭示概念。从这些例子中看,怎样的数叫做分数?你能用一句话概括吗?把单位“1”平均分成若干份,表示这样一份或几份的数,叫做分数。自己写一个分数,说说表示的意义。表示其中一份的数,叫做分数单位。
6.试一试:说出每个分数的分数单位,这个分数里有几个这样的分数单位。
【设计意图】通过多媒体课件及学生动手操作等活动,引导学生从平均分一个物体过渡到平均分多个物体,培养观察思考和分析推理能力,从而更好的理解单位“1”与分数单位的概念。
三、闯关练习,深化认识
1.练一练:
出示:练一练,用分数表示涂色部分,并说说每个分数表示的意义。说出每个分数的分数单位,这个分数里有几个这样的分数单位。怎样用分数表示图中的未涂色部分?
2.涂一涂:练习十一第2题。在图中涂色表示2/3。
3.说一说:练习十一的第3题。说出每个分数表示的意义。
4.找一找:练习十一第4题。在直线上画出表示下面各分数的点。
5.议一议:练习十一第5题。有12枝铅笔,平均分给2个同学。
每支铅笔是铅笔总数的几分之几?每人分得的铅笔数是总数的几分之几?
【设计意图】通过巩固练习,加深学生对单位“1”的理解,促进知识的形成,最大限度调动了学生的积极性,学生真正成为学习的主人。
四、总结梳理,拓展延伸
今天我们学习了什么内容,你有什么收获?
刚才我们一起又一次认识了分数,其实在我们的生活中,分数无处不在。比如说,我们班级有多少名同学?男同学,女同学,第一组,第二组各有多少人?根据这些信息你能想到哪些分数?同学们课后去说一说吧!
【设计意图】帮助学生巩固所学知识,培养学生的自信心。
五、板书设计
分数的意义
把单位“1”平均分成若干份,表示这样一份或几份的数,叫做分数。
把一个月饼平均分成4份,涂色部分表示这样的3份,就是3/4。
把一个正方形平均分成8份,涂色部分表示这样的5份,就是5/8。
把1米平均分成5份,涂色部分表示这样的3份,就是3/5。
把6个圆平均分成3份,涂色部分表示这样的1份,就是1/3。
比的意义教学设计3
尊敬的各位评委:
你们好!我将从教材分析、学況分析、教学目标、教学重难点、教法学法、教学准备、教学过程、效果预测几个方面对本课进行介绍。
一、教材分析
1、教学内容:人教版六年级下册P39正比例的意义。
2、教材的地位和作用:这部分内容是在学生学习了比和比例的基础上进行教学的,着重使学生理解正比例的意义。正比例关系是比较重要的一种数量关系,学生理解并掌握这种数量关系,可以加深对比例的理解,并能应用它解决一些简单的实际问题。同时通过正比例的教学进一步渗透函数思想,为学生今后学习打下基础。
3、教学重点,难点、关键:
教学重点是理解正比例的意义,难点是能准确判断成正比例的量,关键是发现正比例量的特征。
4、教学目标:
根据本课的具体内容,新课标有关要求和学生的年龄特点,我从知识技能、过程与方法、情感态度三个方面确立了本课的教学目标。
知识与技能:学生认识成正比例的量以及正比例关系,并能正确判断成正比例的量。
过程与方法:学生经历从具体实例中认识成正比例的量的过程,通过察、比较、分析、归纳等数学活动,发现正比例量的特征,并尝试抽象概括正比例的意义。
情感态度:在主动参与数学活动的过程中,进一步体会数学和日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。
二、学况分析
六年级学生具备一定的分析综合、抽象概括的数学能力。在学习正比例之前已经学习过比和比例,以及常见的数量关系。本节课在此基础上,进一步理解比值一定的变化规律。学生容易掌握的是:判断有具体数据的两个量是否成正比例;比较难掌握的是:离开具体数据,判断两个量是否成正比例。
三、教法
遵循教师为主导,学生为主体,训练为主线的指导思想,通过游戏引入、自主探究、合作学习等方式进行教学,让学生在自主、合作、探究的过程中归纳正比例的特征。
四、学法
引导学生在观察比较的基础上,独立思考、小组合作交流。具体表现在学会思考,学会观察,学会表达,并对学生进行激励性的评价,让学生乐于说,善于说。
五、教学过程
本节课我安排了六个教学环节
第一个环节:游戏导入,激发兴趣
用游戏的方法将学生带入轻松愉快的学习氛围,激发学生的学习兴趣,活跃课堂气氛,同时也为后面教学做好了铺垫,使学生很快进入学习状态。
第二环节:引导观察,启发思考
教学中让学生自己计算游戏得分,并引导学生进行观察,从而得出:得分随着赢的次数的变化而变化,他们是两种相关联的量,初步渗透正比例的概念。
第三环节:创设情景,观察实验
用多媒体呈现数据的.获取过程,让学生直观地感受到水的体积和高度是两个相关联的量以及二者之间的变化规律。
第四环节:探究成正比例的量
学生在反复观察、思考,讨论、交流的过程中自己建立概念,深刻的体验使学生感受到获得新知的乐趣。
第五环节:巩固练习,拓展提高
第六环节:全课小结
六、效果预测
在教学的始终,我一直引导学生主动探索正比例的意义,加上课件的辅助教学和课堂练习,学生在理解掌握并且运用新知上,一定会轻松自如。所以,我预测本节课学生在知识、能力和情感上都能全面促进,达到预定的教学目的。
本节课在教学设计和具体环节的安排上,可能还存在不足的地方,恳请各位评委给予批评指正。
比的意义教学设计4
一、现在的环境艺术教学中发展的限制性因素
1、因为受到我国的传统教育的影响以及应试教育的束缚,对于现在的高校的教学来说,考核的制度还在沿袭着传统的教学形势下的相关制度对于考核的形式以及答案,都是具有传统的教育形式,具有固定的模式以及固定的答案。但是这种具有固定的标准答案的形式在一定程度上局限了学生的思维发展以及创新的意识。现在的很多的高校对于环境艺术设计相关的专业方面都是具有一定的顺序的,按照基本的造型基础、设计理论以及设计基础和专业设计方面的基础进行教导,在这方面就可以很清晰的看到学生在进行学习的过程中是需要按照一定的严格的教学标准进行学习,但是这样就会局限让学生局限于现有的教育模式,不能够进行思想上的创新以及发展。不能充分的发挥自己的想象以及设计的思绪。在进行学习的过程中,导致学生不善于改变学习的思路,充分的发挥自己的想象以及思维。不管是课程的横向发展还是课程的纵向发展,都会影响到学生的学习情况,并且不利于提升学生的学习学习兴趣以及积极性。
2、限制学生的思维方式的转变因为学生在进行学习的过程中,一直处于固有的学习模式,并且相对的封闭的教育。这种教育形式在环境艺术相关教学中主要体现在学生在进行设计某个项目是,只是单方面的进行相关的环境问题,但是并不能全面的考虑到设计的经济环境以及社会环境。学生只是接受了教师的相关的意见进行设计,但是并没有自己的创新的想法,所以,在进行设计时,相对的局限性严重的影响了学生的思维方向,因为传统的教育模式的影响,导致学生的创新思维形成了单一的模式,不能很好地适应现在的经济发展形势。并且学生在进行设计的过程中,不能将设计的理念以及设计的思维进行有效的结合以及统一。对于这方面的意识也非常的薄弱,还有很多的学生根本不会动用自己的思维进行创新,只是一味的按照教师的教导思维进行设计,这样不仅不利于设计形式的展现,更不利于学生的创新性思维的体现。
3、禁锢学生的创新性的思维传统的教学形式最不利于学生的就是比较传统,抑制学生的相对的开放性的思维。非常的不利于学生的创新以及对于设计的相关的知识的掌握。当然,并只是体现在的学生的思想上面。教师对于学生的思想教育也是过于的传统以及教条。很多的教师对于学生的设计作品因为不符合或是比较夸张一点的形式就予以否认,这样就非常的不利于学生的思想创新,并且还会打击到学生的学习积极性以及对于环境设计的热情。
二、发散式教学对于环境艺术设计的体现
1)发散式教学在环境设计中的应用,可以使相关的标准答案可以进行多方向的延伸,这样就会促进环境设计教学的多样化的发展。不管是任何的关于设计的想法,对于环境设计来说都是具有创新价值的。好的创意,好的环境设计的信息点以及一个关于设计的好的想法都是对于环境设计创新的体现。发散性的教学主要体现就是不管是什么样的创新想法以及创新意识。,都有可能成为正确的答案。所以,在进行环境设计得教学中,要重视多多的培养学生的创新意识,以及独立思考的能力,这样才能让学生获得更加重要的.设计价值以及关于设计的知识技能,创造出更好的设计产品。并且教师在进行教学的具体方案的设计时,将需要讲解的相关的知识以及设计理念在课堂上教授给学生。发散性教学不仅推翻了关于环境设计的基础教学以及专业性的教学之间的差距。并且在面对大型的考试时,可以让学生掌握各个阶段不同的环境设计的状态,在进行考试的同时,不用过于的烦恼与固定的答案不符的现象。可以充分的发挥自己的想象,将自己的想法进行充分的展现。
2)充分的发挥学生的思想,可以让学生的想法得到充分的展现。想象是这个世界上最神奇的东西,在环境艺术设计的学习中,永远离不开的就是学生对于设计的想象。关于发散性教学,可以让学生充分的发挥自己的想象,对于环境艺术的设计,离不开的就是学生的创新性的思想。发散性教学可以让学生打破固有的思考模式,采用创新性的思维方式进行思考问题。可以改变学生的单向的思维方式,将学生慢慢的引向多元化的思维方式中,通过多角度的思考进行创新设计理念。针对于同一个设计方案,需要学生们通过多方面的进行思考,无限的延伸学生的想象力,激发学生对于设计理念的无限潜能。并且在挖掘潜能的基础上进行多方面的设计延伸,实现设计的效果的最大化。随着现在的经济形式的多元化的发展,对于环境艺术的设计已经不能单单的从表面进行定论,需要学生从多角度的方向进行深层次的分析,然后进行设计。
比的意义教学设计5
教学内容:
教科书第1~2页,例1、例2、试一试、练一练,练习一第1~3题。
教学目标:
1、认识等式,以具体的实例引导学生通过自主的探索活动,初步理解等式的特征。
2、通过观察比较,使学生认识到含有未知数的等式是方程,感受等式与方程的联系与区别,体会方程是特殊的等式。
教学重点:
理解等式的性质,理解方程的意义。
教学难点:
利用等式性质和方程的意义列出方程。
教学准备:
多媒体课件
教学过程:
一、情景引入
1、出示天平。
知道这是什么吗?你知道它是按照什么原理制造的吗?
说说你的想法。
如果天平左边的物体重50克,右边的放多少克才能保持天平的平衡的呢?
二、教学新课
1、教学例1。
(1)出示例1图。
你会用等式表示天平两边物体的质量关系吗?把它写出来。
50+50=100(板书)
说说你是怎样想的?
(2)指出等式的左边,等式的'右边等概念。
等式有什么特征?(等式的左边和右边结果相等;等式用等号连接)
能说说什么样的式子叫做等式吗?(左右两边相等的式子叫做等式)
2、教学例2。
(1)出示例2图。
天平往哪一边下垂说明什么?(哪一边物体的质量多)
你能用式子表示天平两边物体的质量关系吗?
学生独立完成填写,集体汇报。
板书:x+50>100 x+50=150
X+50<200 x+x=200
如果让你把这四个式子分类,应分为几类?为什么?
指出:左右两边相等的式子就叫做等式,而这些等式与前面所看到的等式又有什么不同?(等式中含有未知数)
知道像x+50=100,x+x=100这样的等式叫什么吗?(方程)
说说什么是方程?你觉得这句话里哪两个词比较重要?(含有未知数、等式)
(2)讨论:等式与方程有什么关系?
小组讨论。
指出:方程一定是等式,但等式不一定是方程。
方程是特殊的等式。他们的关系可以用集合圈表示。
3、教学“试一试”。
独立完成,完成后汇报方法。
让学生说一说,每题中的方程哪个更简洁一些?
指出:像500÷2=x,20-12=x虽然也是方程,但在列方程时应尽量避免这样x单独在等号左边或右边的方法。
4、完成“练一练。
(1)完成第1题。
独立完成判断后说说想法。
(2)完成第2题。
(3)完成第3题。
交流所列方程,说说你为什么这样列?你是怎么想的?
三、巩固练习
1、完成练习一第1题。
能说说每个线段表示的意思吗?方程怎样列呢?
小组中交流列式。
2、完成练习一第2题。
理解题意,说说数量关系是怎样的?
列出方程并交流。
3、完成练习一第3题。
四、课堂总结
通过学习,你有哪些收获?
板书设计:
方程
等式50+50=100 x+50>100 x+50=150
比的意义教学设计6
教学目标
1.在现实情境中,能初步理解小数的意义,学会读写小数,体会小数与分数的联系。
2.在用小数进行表达的过程中,感受小数与生活的联系,增强数学学习的兴趣。
3.培养良好的学习习惯,提高学生的探究、归纳比较、推理能力。
教学重点理解小数的意义。
教学过程
一、交流信息,引入课题
师:课前布置学生收集一些与小数有关的资料,谁愿意读给大家听听?谈谈你了解到了什么,又想到些什么?
小结:刚才出现的这些数都是小数,它们表示什么意义,应该怎样正确地读和写呢,;今天这节课我们一起来学习。(板书课题:小数的意义和读写方法)
【设计意图:学生的知识起点是三年级时对一位小数的直观认识和刻画,这是教学的起点,也是思维的动点。通过找身边的小数,引发学生对小数的认识,激起进一步学习和探究的热情】
二、教学例1
初步感知
师:为了便于研究,老师课前也收集了一些与小数有关的材料。
1.出示例1三幅图。图上这些数都是小数,表示物品的价钱。会读吗?如果你到商店去买这些物品,该怎样付钱呢?
生1:元就付3角。
师:很好,你会把元转化成角来考虑。那元和元呢?
生2:元就是5分。
生3:元就是4角8分。
帅:对,也可以说成48分。
2.师:把3角写成用元做单位的分数,是多少呢?
生:3角=3/10元。(一元=10角,1角就是1/10元,3角里面有3个1/10,是3/10元)
师:3角=3/10元,也可以写成元,读作零点三元。(板书)
师:5分、48分也写成用元做单位的分数,你们会吗?同桌先讨论一下,再回答。
生:5分=5/100元,48分=48/100元(1元=100分,每份是1/100元,5分有5个1/100,就是了5/100元;把1元平均分成100份,每份是1/100元,48分就是48/100元(板书:5分=5/100元48分=48/100元)
师:5/100元还可以写成小数元,读作零点零五;48/100元还可以写成小数元,读作零点四八。(继续板书读写)
小结:、、都是小数,的小数部分有位,是一位小数,和小数部分有两位,是两位小数,当然,还有三位小数、四位小数
【设计意图:小数的意义较为抽象,学生掌握起来有一定困难。在初步感知阶段,利用元该怎么付?学生把元转化成角,进而追问3角钱以元为单位用分数表示?得出元=3角3/10元,即=3/10。充分运用学生已有的知识经验和生活经验,通过类比,迁移,为下面学习两位小数、三位小数等作好充分的准备。在得出分数之后,告诉学生3/10还可以写成像这样的小数,再教给读法】
三、教学例2
揭示意义
1.师:刚才从1元:100分,我们想到了用分做单位的数都表示1元的百分之几,都能写成小数,在其他情境中也能看到这样的现象。瞧,(课件出示米尺)这是一把米尺,我们截取了一部分。把1米平均分成100份,每份是1厘米。1厘米等于1/100米,还可以写成米。(板书:1厘米=1/100米=米)那么,(出示)4厘米、9厘米写成分数和小数各是多少呢?
学生尝试完成。
师:请位同学来说一说,你是怎么填的?
板书:1厘米=1/100米=米
4厘米=4/100米=米
9厘米=9/100米=米
师小结:
请大家仔细观察一下,、和都是两位小数。那前面对应的这排分数有什么共同之处呢?
生:都是分母为100的分数。
师:对,他们都是分母为100的分数。分母是100的分数可以写成两位小数。现在你们知道什么样的分数可以写成两位小数吗?什么样的分数可以写成三位小数呢?
2.我们继续观察刚才那把米尺,把他平均分成1000份,每份是1毫米。(课件出示)1毫米是1米的1/1000,还可以写成米。(板书1厘米=1/1000米=米)那7毫米、15毫米写成用米做单位的分数和小数各是多少?大家试试吧。
板书:1毫米=1/1000面米=米
7毫米=7/1000米=米
9毫米=9/1000米=米
小结:
请大家观察这一行分数和对应的小数,你有什么发现?
生:分母是1000的分数可以用三位小数表示。
3.总的观察:
三位小数是由分母是1000的分数得到的,两位小数由分母是100的分数得到的,那位小数呢?{是由分母是10的分数得到的)谁来说说什么样的分数可以改写成小数呢?
生:分母是10、100、1000的分数可以用小数表示、:(屏搭上出示这句话)
师:我们再从右往左看,表示3/10,表示5/100,表示48/100,表示1/1000,表示4/1000你有什么发现?
生:一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几。
师(指着省略号):四位小数呢?(表示万分之几)
【设计意图:数学学习的本质在于数学思维、经过对一位、两位、三位小数意义的具体分析后,教师抓住展示和交流这一时机,通过清晰直观的板书,从左往右又从右往左地引导学生进行概括、归纳、推理,最后达成了对小数意义的系统认识和理解】
四、练习拓展,巩固提升
(一)说说做做这个练习分4个层次进行。
师:上面每个图形都表示整数1,你会用分数和小数把涂色部分表示出来吗?
7/1033/1009/1000
选其中个小数请学生说出表示什么意义。并通过上下对比观察,再次强化:分母是10、100、1000的分数,用小数米表示分别是一位小数、两位小数、三位小数。
2.师:阴影部分是,淮能用小数表示出空白部分?它又表示什么意义?
3.出示空白图形和、、这三个分数,分别动手涂色表示出这三个小数。
4.个人自由在空白图形上涂色,同桌互相考查,分别用小数表示出涂色和空白部分。
【设计意图:在新课结束后,书上安排了练一练,教材的目的在于巩固小数的意义,但如果这样,题目的价值就没能充分发挥出来,将练一练进行适当处理,使书上分散的练习融为一个整体,由浅入深地对一道习题进行充分的挖掘与应用,使题目增值。
第一层次是对教材目标的基本达成;
第二层次是对习题的进一步开发,渗透辩证统一思想;
第三层次培养逆向思维能力;
第四个层次由个体智慧到合作交流,对习题实现了更高层次的创造和升华:采用了让学生画小数这种直观的操作活动,伴随着学生画前的思考和画后的交流,学生对小数意义的理解也就从画出来想出来说出来,逐渐明了】
(二)快速抢答。练一练1、2和书上练习第4题。
(三)我说你写。老帅报几个小数,看谁能又快又好地记下来。
问座位互相检查一下,写的对不对?
(此时有同学争论:和,是不是老师重复报了个?)
师(故意):大家争论什么?你为什么这样想?
生1:我认为和一样大,所以是重复写了;
师:表示什么:意义?0.80又表示什么意义?
生2:表示十分之八,是把1平均分成100份,取其中8份,表示一百分之八十,是把1平均分成100份,取其中80份。
师指出:很特别,末尾是0,虽然末尾是0,但它表示两位小数,这个。有特殊的意义,我们以后再学习。(为学习小数的`基本性质打下伏笔)
(四)纠错能手。家文具店里的商品标价不太规范,请你帮忙把这些标价改成用元作单位的小数。
小刀3角擦皮8分直尺5角9分
(五)开放题:把6毫米用小数表示出来,你有几种方法?
(六)出示姚明照片:认识吗?准来介绍介绍他?他的身高是多少?
生:2米26。(板书2米26)
师:2米26是口头话,用规范的数学语言,应该说成多少米?(米)你的身高是多少米?猜猜老师的身高。(米)这些数跟我们今天所学的小数还有点不同(整数部分不是0)。关于这些小数的知识,我们以后继续学习。
【设计意图:在拓展提升部分,通过多种形式的练习,引导学生从身边的现象入手,不断巩固所学的小数的意义和读写方法。注意细节的处理,和的比较,6毫米的三种表示方法,以及姚明身高米的表述,既引导学生归纳出数学知识,又为后续学习打下铺垫】
比的意义教学设计7
教学内容:
人教版课标教材小学数学第九册第四单元第53页、第54页“方程的意义”。教学目标:借助生活情境理解方程的意义,能从形式上判断一个式子是不是方程;经历从生活情境到方程模型的建构过程,感受方程思想;培养学生观察、描述、分类、抽象、概括、应用等能力。
教学重点:
准确从生活情境中提炼方程模型,然后用含有未知数的等式来表达,理解方程的意义。
教学难点:
理解方程的意义,即方程两边代数式所表达的两件事情是等价的。
教学过程
一、呈现情境,建立方程
1。师:(出示一台天平)请看,这是一台天平,在什么情况下天平会保持平衡呢?
教师在天平的一边放上两袋100克的食物,另一边放一个200克的砝码,这台天平保持平衡了吗?
提问:你能用一个式子表示这种平衡吗?(100+100=200或100×2=100)你怎么想到了用数学符号“=”来表示天平的平衡呢?(引导学生说出:这里的100+100表示的是天平左盘食物的质量,200表示的是天平右盘砝码的质量,正因为它们的质量相等,天平才会平衡,如果学生说成:食物的质量=砝码的质量,教师也给予肯定,然后问:现在已经知道这两袋食物的质量都是100克,砝码的质量是200克,那么上面的式子可以写成什么形式?)
2。(出示两小袋食品)将左盘的食物换成两袋30克的食物,天平还是平衡的吗?为什么?你能用一个式子表示这种不平衡吗?(30+30200)咱们班谁喜欢喝牛奶?你喝吧!问:这盒牛奶被喝掉多少克了?再问:这盒牛奶现在的质量可以怎么表示?(275—x)克。
3。再将这盒喝过的牛奶放在天平的左盘,可能会出现什么情况?可以怎么表示?写一写!点名汇报,(切忌一问一答!当学生答出一种情况,老师随机问这种情况表示的是什么情况)
当学生说出275—x>200、275—x=200、275—x200,275—x>200,275—X=200,275—x72,③y+24④5x+32=47,⑤2x+3)=34,⑥6(a+2)=42
(对不是方程的式子,一定要学生从本质上解释为什么不是方程)
学完方程后。小明又列了两个式子,却不小心被墨水给弄脏了,猜猜他原来列的是不是方程?
让学生明白,不管墨迹处是什么,第一个都是方程,第二个则可能是也可能不是,可小明说,他列的第二个式子也是方程,猜一猜,他列了个什么方程?
4。看来,大家对方程又有了更深刻的认识,其实,早在三千六百多年以前,人们就对方程有了自己的认识你知道吗?
课件出示(配以录音):早在三千六百多年前,埃及人就会用方程解决数学问题了,在我国古代,大约两千年前成书的.《九章算术》中,就记载了用一组方程解决实际问题的史料,一直到三百年前,法国的数学家笛卡尔第一个提倡用x、y、z等字母代表未知数,才形成了现在的方程。
很多以前用算术方法解起来很难的问题,用方程能轻而易举地解出来。
设计意图:
动态平衡是为了加深对方程本质的理解判断题中对不是方程的式子的合理解释,进一步明晰了方程的表现形式有别于其他等式、不等式或代数式,为了让学生感知方程的多样性,防止学生把未知数狭隘地理解为一个或者狭隘地理解为z,在这一题里设计了有两个未知数的,也设计了含有未知数a、y的。
比的意义教学设计8
教学目标:
知识目标:理解与掌握方程的意义,弄清方程和等式两个概念的关系。
能力目标:培养学生认真观察、思考分析问题的能力。
情感目标:激发学生求知欲和好奇心,感受数学探索的乐趣,体会“生活中处处蕴涵数学知识”;渗透数学来源于实际生活辩证唯物主义思想。
教学重点:理解和方掌握程的意义,会用方程的意义去判断一个式子是否是方程。
教学难点:会用方程表示简单情境中的等量关系。
教学准备:教学课件。
教学流程:
一、导入新课:
教师:我们已经学习了用字母表示数,今天学习解简易方程。这部分知识非常重要,掌握了它会使我们多了一种解题方法,可以使某些较难的应用题化难为易,有助于提高我们分析问题和解决问题的能力。
二、探究新知:
(一)探究方程的意义:
介绍天平:(课件出示天平图)
天平实验,引出方程:
1、第一步,称出一只空杯子重100克;
第二步,往杯子里倒人约X克水,使天平出现倾斜。
第三步,增加100克砝码,发现了什么?如果将水设为x克,那么用一个式子该怎么表示杯子和水比200克重这个关系呢?(100+x>200)
第四步,再增加100克砝码,天平往砝码这边倾斜。哪边重些?怎样用式子表示?(100+x<300)
第五步,把一个100克的砝码换成50克,天平出现平衡。现在两边的质量怎样?用式子怎样表示?(100+x=250)
2、教师:①观察100+x=250:这是一个等式吗?这个等式有什么特点?
②像100+x=250这样含有求知数的等式,人们给它起了个名字,你们知道叫什么吗?(方程)
小结:像100+x=250这样的含有未知数的等式,称为方程。
3、深入探讨理解:
①根据方程的含义,方程应该具备哪些条件,②方程与等式之间有什么关系,你能用集合图来表示吗?
写方程,加深对方程的认识:
三、练习巩固:
1、完成课本第54页做一做。在是方程的`式子后面打上“√”。
判断并说胡理由。通过交流使学生明确判断一个式子是不是方程,一看是不是等式,二看有没有未知数。
2、判断,对的在括号里打√,错的打×。
(1)等式都是方程,方程都是等式。()
(2)含有未知数的式子叫方程。()
(3)不是方程。()
3、用方程表示下面的等量关系。
(1)加上35等于91。
(2)的3倍等于57。
(3)减31的差是86。
(4)7.8除以等于1.3。
4、先说出下面题目中的数量间的相等关系,然后用方程表示出各题中数量间的相等关系。
(1)文具店原有乒乓球40筒,卖出χ筒,还剩18筒。
(2)某班有男生23人,女生χ人,共有50人。
(3)小红买了5支铅笔,每支χ元,共付9元。
(4)一头大象重5.1吨,一头牛重χ吨,这头牛比大象轻4.75吨。
(5)甲地距乙地S千米,一辆汽车以每小时42千米的速度从甲地开往乙地,12小时到达。
5、开放题:妈妈生日到了,小明想用12元零花钱为妈妈买几枝康乃馨,康乃馨每枝X元,他的钱如果买4枝则多3.6元,如果买6枝则少0.6元。根据题目提供的信息,选择有用的条件,你能列几个方程?(同桌议一议)
四、课堂总结:
教师:想一想,这节课学习了什么?你有哪些收获?
课后反思:
学生对什么是方程都有所了解,本节课是成功的。
比的意义教学设计9
教学内容
六年级数学下册第70~71页。
教学目标
知识技能
1、结合生活中的具体情境,体会四则运算的意义;
2、在具体运算和解决简单实际问题的过程中,体会加与减、乘与除的互逆关系。
过程与方法
自己先复习,小组交流,全班交流
情感态度价值观
3、培养学生良好的学习习惯和独立思考的好习惯。
教学重、难点
1、体会四则运算的意义。
2、感受加与减、乘与除的互逆关系。
教法学法
自主学习法、合作学习法、讨论法、练习法、讲授法
教学准备
复习本、课件
教学过程
一、创设情景,导入复习。
1、同桌交流情境“庆祝六一”的预习情况:你能提出哪些数学问题?
2、全班交流(师根据学生汇报情况相机板书)。
学生可能提出的问题:
两位同学一共折了多少只纸鹤?
装饰教室还需要折多少只纸鹤?
一共需要多少钱?
扎礼品盒、蝴蝶结分别需要用多少米彩带?
每个小组有多少人?……
二、回顾整理、构建网络。
1、在解决问题的过程中,你使用了哪些运算?
2、这些知识在我们脑中比较零散,不便于记忆和运用,请大家用自己喜欢的方式对这些知识加以整理。
3、全班交流,展示。每个同学整理完后,先在小组讨论、交流,再选出代表在全班交流。
四则运算、关系、意义、各部分之间关系
加法:加、减法互为逆运算把两个数合并成一个数的运算。
加数+加数=和
一个加数=和-另一个加数
减法:已知两个加数的和与其中的一个加数,求另一个加数的运算。被减数-减数=差
被减数-差=减数
被减数=减数+差
乘法:乘、除法互为逆运算求几个相同加数的和的简便运算。一个因数×另一个因数=积
一个因数=积÷另一个因数
除法:已知两个因数的积与其中一个因数,求另一个因数的运算。被除数÷除数=商
除数=被除数÷商
被除数=商×除数
【设计意图】这样的设计让学生对所学的所有的运算有个完整的认识,同时搞清楚各种运算的意义。
4、师生总结。
三、重点复习、强化提高
1、课本第71页第1题。
让学生在提出问题,在解决问题的过程中巩固四则运算的意义。
2、课本第71页第2题。
先让学生弄清题目中的数量关系,独立解答后再说说解答过程。
3、课本第71页第3题。
独立解答后再说说解答过程。
4、课本第71页第4题。
让学生自己给算式找出生活中的具体情境。
四、自主检评,完善提高
(一)自主检评。
1、想一想,填一填。
(1)58+58+58+58=()×()
(2)根据2516÷68=37,直接写出下列各题得数:
2516÷37=()68×37=()25、16÷0、37=()
(3)在()内填入适当的运算符号或数据:
0、43()1000=4302、46×()=24、6
12、5()100=0、1250、03×()=30
()×0、3×8、54=064×125=()×8×125
2、2008年5月12日,四川汶川发生了特大地震。为支援地震灾区,实验小学开展了献爱心活动。
(1)五、六年级学生各捐款多少元?
(2)五年级学生捐款数是四年级的几倍?
(3)六年级学生捐款数正好是三年级的8倍,三年级学生捐款多少元?
(4)全校教师捐款比六年级的3倍多80元,全校教师共捐款多少元?
(5)如果全校共有2000人比六年级的6倍少200个人,六年级有多少人?
要加强这方面的练习,不要让学生养成简单模仿的习惯,要让学生在对比练习中养成独立思考,善于思考的良好学习品质。
(二)交流、评价。
五、归纳小结、课外延伸。
1、通过本节课的复习,你有什么新的收获或感受?
2、课外延伸。两个数相除,商9余4,被除数、除数、商、余数之和等于867,求原来的被除数和除数各是多少?
板书设计
运算的意义
加法:加、减法互为逆运算把两个数合并成一个数的运算。
加数+加数=和
一个加数=和-另一个加数
减法:已知两个加数的和与其中的一个加数,求另一个加数的运算。被减数-减数=差
被减数-差=减数
被减数=减数+差
乘法:乘、除法互为逆运算求几个相同加数的`和的简便运算。一个因数×另一个因数=积
一个因数=积÷另一个因数
除法:已知两个因数的积与其中一个因数,求另一个因数的运算。被除数÷除数=商
除数=被除数÷商
被除数=商×除数
:今天复习的是四则运算的意义和法则,对这一直感到很烦恼:如果单纯地让孩子回忆意义和法则,全部到位,一节课的时间也就所剩无几了,根本没有练习的时间;而更为重要的是学生会背诵法则是否表示他能正确合理地进行计算了呢?这答案当然是否定的。基于这样一种考虑,今天我并没有强求学生背诵意义法则,特别是法则,主要是结合具体的习题练习来复习。显然,学生也更喜欢更愿意通过习题来复习,而不是枯燥地背诵。
练习分成了三个层次:第一层次是整数、小数的四则计算和验算,主要考虑这两者的计算方法几乎一样,有共通性;第二层次是分数四则计算,第三层次则是估算,这是我本学期增添的内容
在练习中,特别强调了计算中的余数处理问题,如5400÷2600,我让学生明确计算时可以写成54÷26,但确定余数时必需回到原式;又如70、5÷2、5,也通过同样的道理让学生明确余数应该结合原数确定。在课后练习中,同样的情况,由于课中进行了练习,错误明显降低,这也要求教师在进行教学前一定要认真研究习题,做到预先计划,才能达到更好的效果。
比的意义教学设计10
教学目标:
1、理解比的意义,掌握比的读法和写法,认识比的各部分名称。
2、掌握求比值的方法,并能正确求出比的比值。
3、培养学生抽象、概括能力。
教学重点:
理解比的意义,掌握求比值的方法。
教学难点:
理解比的意义,建立比的概 念
教学过程:
活动一:
同学们,在每个星期一的早晨我们学校都会举行一种什么仪式?我们学校为什么要经常举行这种升旗活动呢?其实在我们的国旗里面还隐藏着许多有趣的数学问题呢?今天,我们就一起去探究一下。
课件出示问题:一面红旗,长3分米,宽2分米,谁能用算式来表示长和宽的关系?
在学生的回答中,老师选取两个答案:3÷2表示长是宽的几倍?和2÷3表示宽是长的几分之几?告诉学生这种关系除了用除法算式表示外,还可以用另外一种方式来表达,那就是——比。引出本节课内容“比的意义”。
活动二;
(一)探究同类量的比;外,还可以表示长和宽的比为3比2。让学生依次说出2÷3还可以表示什么意思?
同学们,刚才我们都是把长和宽进行了比较,为什么一个是3比2,一个是2比3,让学生说说从中有什么收获?
让学生举出生活中这样的例子。
(二)探究非同类量的.比
课件出示书中的第二个红点问题。
让学生用算式表示如何求速度?通过公式来列算式,引导学生写出路程和时间的比是多少?
再让学生举出生活中这样地例子。
活动三:
仔细观察上面的例子,对两个数量进行比较,既可以用除法,又可以用比的方法。那什么叫做比呢?(学生讨论交流)
通过刚才的学习,我们理解了比的意义,在课本的78~79页还涉及到一些关于“比”的其他知识,你们想自己研究、探索吗?老师有个小小的要求,请大家对照老师所给的问题,以四人小组为单位进行自学,可以在小组里讨论,然后汇报交流。
课件出示问题:
⑴、比的读、写法?比都有哪些表示形式?
⑵、比的各部分名称?如何求比值?
⑶、比和除法、分数有哪些联系?
⑷、比的后项能不能是0?为什么?
引导学生起来交流,在学生交流的基础上有针对性的板书。
活动四:
1、填一填。
⑴、把2克盐溶解在100克水中,盐和水的比的( )。盐和盐水的比是( )。
⑵、一辆汽车来运货,一共运了5次,共运了20吨,写出运的吨数和次数比是( ),比值是( )。
活动五;
学生谈收获。
比的意义教学设计11
教学内容:
人教版《义务教育课程标准实验教科书数学》三年级下册第六单元《面积的意义》。
认知目标:
结合实例使学生理解面积的意义。
能力目标:
培养学生观察、比较、操作、概括等能力,发展学生的空间观念。
情感目标:
通过自主学习、动手操作,感受数学的价值以及在生活中的应用,获得成功的体验以及用数学的乐趣。
教学重点:
理解面积的意义。
教学难点:
学习比较面积大小的方法。
教具准备:
多媒体课件。
学具准备:
装有各种平面图形的信封①号和②号,内有大小不同的正方形、长方形、圆形学具若干。
教学过程:
一、创设情境,激趣导入。
同学们,有个问题老师想来想去都想不明白,你们想帮帮我吗?(想)问题是这样的:我到玻璃店为两个大小为12厘米×9厘米和18厘米×6厘米的长方形(多媒体演示)相框安装玻璃,店老板说每块玻璃都要付10元,你们觉得这样收费合理吗?(学生说)看来,各人意见都不同,先让我们学习有关面积(板书)的知识,再来解决问题吧!
二、合作交流,动手探新。
1.探索面积的含义
A.大家都知道,像粉笔盒、电脑等物品都是物体,而物体都有它们的表面(师示范摸粉笔盒的面),现在请摸一摸你的课桌面和数学书封面,感觉怎么样?有什么发现呢?
B.请看大屏幕,我发现了讲台的面比粉笔盒的面大(师边讲边操作),现在请打开书本第70页,通过看图同位继续找发现。
C.学生汇报:
如:我发现黑板的面比电视机的屏幕大。
我发现三角形比长方形小……(学生一边点击一边说,师板书)
D.小结:
刚才,通过大家的观察发现,我知道了像黑板、电视机、数学书等物体,它们的面称为物体的表面(板书),三角形、长方形等图形我们称为封闭图形(板书)。还知道它们的面是有大有小的,黑板面的大小,三角形的大小,就是它们的面积,现在你能用自己的话说一说什么是面积吗?
E.得出面积定义:
①学生讲
②师完成板书:或、的在小、就是它们的面积。
③在书本画出概念并找出重点字词。
④齐读。
⑤同桌互说面积的定义。
F.举身边的面积:
同学们真了不起,通过自己动手、动脑成功认识了“面积”这个好朋友,表扬你自己(棒棒,我真棒)。刚才大家通过拍手表扬了自己,那么手掌表面的大小就是…(手掌的面积)。现在老师和你们玩一个“寻宝游戏”。看面积躲在我们身边的什么地方?(学生汇报:笔盒表面的大小就是它的面积……)
2.比较面积的大小
A.直接比较
①同学们真棒,已经知道物体的表面或封闭图形的大小,就是它们的面积。那么,有信心比较出面积的大小吗?请拿出1号信封,四人小组讨论谁的面积大,并给自己比较的方法起个名字。
②学生汇报。
A观察法
B重叠法
C?
由学生引起矛盾,通过观察法和重叠法都比较不出它们面积的大小
生:老师你有什么好办法?
B.间接比较
①师:这样吧,老师有个建议,既然不能直接比较,我们借助一些工具帮帮忙吧。请拿出2号信封,选择自己喜欢的图形摆一摆,看能否比较出它们面积的大小。(学生四人小组合作,教师巡堂指导。)
②学生汇报,得出数方格法。
③小结。
第×组的同学可以比较出两个长方形面积的大小,是因为他们采用了统一的标准,所以比较两个图形面积的大小,要用统一的面积单位来测量。(板书)
3.质疑问难:
①同学们,其实刚才比较的'这组图形的面积刚好是我要配的玻璃的大小,现在你知道为什么要付同样多的钱吗?
②还有什么不懂的地方?
生提。
师提:面积定义中,物体的表面与封闭物体之间为什么用“或”不用“和”连接呢?
“或”是可以是物体,也可以是封闭图形,“和”是两种情况都有才行。
三、精心设练,乐中用新。
1.哪个图形的面积大,哪个图形的面积小?
①猜一猜,谁的面积大?谁的面积小?(多媒体)
②验证:出示格子(每个□的大小一样),学生数格子的数目,得出结果。
2.比较海南省、广东省、江西省、四川省的版图
问:哪个省的面积大,哪个省的面积小?
3.小小设计师
比的意义教学设计12
【学习内容】:
人教版义务教育课程标准实验教科书数学六年级下册第32—33页的内容。
【学习目标】:
1、结合具体情境,通过计算,能说出比例的意义。
2、能应用比例的意义判断两个比能否构成比例。
3、通过观察、比较、小组讨论说出比和比例的区别。
【学习重点】:
比例的意义,应用比例的意义判断两个比是否能构成比例。
【学习难点】:
应用比例的意义判断两个比是否能构成比例。
教学过程
一、复习旧知、导入新课
同学们,以前我们学习了比,现在大家想一想,什么是比?比有几项?比有什么性质?并给我们举出实例。
二、比较分析,探究新知
1、出示情景图,说一说各幅图的情景。
第一幅:xx前的升国旗仪式
第二幅:学校每周一的升旗仪式
第三幅:教室前面的红旗
第四幅:谈判桌上的红旗
(对学生进行爱国主义教育)
问题:1:你能说一说这四幅图中国旗的相同点和不同点吗?
2:你们想知道这些长和宽是多少吗?
出示国旗的长宽数据。
3:请同学们观察、计算一下,国旗的长和宽的比值是多少?
3板书:2.4:1.6=2360:40=2
4、探求共性,概括意义
师:比较一下,你什么发现?
师:那既然这两个比的`比值相等,请你想想用什么符号把这种关系表示出来!
生:用等号(师把左右两个中间板书=)
师:同学们现在用了等号表示出这样一个式子,(板书:式子)谁来说一说这个式子就表示了什么?
生:表示相等的两个比。
生:表示两个比值相等的比
(师板书:比相等)
师:像这样表示两个比相等的式子叫做比例。板书
同桌互相说说
这个就是今天我们学习的——比例的意义(板书:比例的意义)
三、合作探究,进一步理解比例。
1、探索组成比例的条件
师:请同学们再默读一遍比例的意义,思考:想要组成比例必须要具备哪些条件?
(教师再强调:一定是比值相等的两个比才能组成比例。)
2、寻找比例
师:你还能从四面国旗中找出哪些比例?(学生写在练习本上,然后汇报。教师板书2.4∶1.6=15∶10 60∶40=5∶ )
3、介绍比例的第二种表示方法
师:我们在学习比的时候,可以把比写成分数的形式,那比例也能写成分数的形式吗?怎么写?(学生口答,教师板书: )
4、区分比和比例
师:我们刚才一直在强调比和比例的联系,那么比就是比例吗?(小组交流)
从形式上区分:比由两个数组成;比例由四个数组成。
从意义上区分:比表示两个数相除;比例表示两个比相等的式子。
四、根据意义,判断比例
师:刚刚我们认识了新的式子比例,那要是让你来判断两个比是不是能组成比例,你会怎么办?
生:看比值是不是相等
1、完成“做一做”。
下面哪组中的两个比可以组成比例?把组成的比例写出来(见书上做一做)
2、试一试,5:8 与1:5 这两个比能组成比例吗?为什么?你能想出一个办法给5:8找个朋友组成比例吗?
3、反馈:(1)你给5:8找的朋友是( ),组成的比例是( ),向大家介绍你用了什么方法找到的。
4、想一想,能与5:8组成比例的朋友能找几个?你认为这无数个朋友有什么共同特点?
5、处理做一做第二题。
6、处理练习六第一题。
四、目标检测
1、判断:
(1)、有两个比组成的式子叫做比例
( )
(2)、如果两个比可以组成比例,那么这 两个比的比值一定相等。
( )
(3)、比值相等的两个比可以组成比例
( )
(4)、0.1:0.3与2:6能组成比例
( )
(5)、组成比例的两个比一定是最简的 整数比
( )
2、写出比值是5的两个比,并组成比例。
3、练习六第二题。
4、拓展练习:某罪犯作案后逃离现场,只留下一只长25厘米的脚印。已知脚的长度与人体身高之比是1:7,你能推测罪犯身高大约是多少吗?
五、总结
师:这节课,大家都非常积极和认真,老师相信你们的收获肯定很多,那谁来说说本节课有什么收获?(学生自由说)
六、板书设计:
比例的意义
操场上的国旗:2.4∶1.6=1.5
教室里的国旗:60∶40=1.5
2.4∶1.6=60∶40 也可以写成
表示两个比相等的式子就叫做比例。
比的意义教学设计13
教学内容
苏教版《义务教育课程标准实验教科书 数学》三年级(下册)第100~101页。
教学目标
1. 使学生经历认识小数的过程,初步了解小数的含义,会读、写一位小数,知道小数各部分的名称,知道自然数和整数。
2. 使学生在解决实际问题的过程中,培养初步的自主探究、合作交流的意识,感受数学和生活的密切联系,增强学好数学的信心。
教学过程
一、 复习导入,唤起经验
出示:1/2 58 5/12 0.5 1.2 5.8
提问:同学们,知道这些数分别是什么数吗?
谈话:后面的三个数,你平时在什么地方见到过?
学生可能会想到:铅笔芯的规格、眼睛的视力、商品的价格等。
揭题:是的,在日常生活中经常接触到这样的数。它们都是小数,今天我们一起来认识小数。(板书课题:认识小数)
二、 联系实际,探究发现
1. 提出问题。
提问:你想了解小数的哪些知识?
学生可能提出:小数是怎么来的?学了小数有什么用处?小数应该怎样读,怎样写?……
2. 教学第一个例题。
谈话:同学们想知道小数是怎样产生的吗?其实小数就来自我们的生活。先让我们来做这样一个活动:小组合作测量课桌面的长和宽,并用不同的数、不同的单位把测量结果表示出来。比一比,哪个小组想到的表示方法最多。
学生在小组内测量课桌面的长和宽,交流不同的表示方式。教师巡视,并作适当指导。
反馈:你们小组的测量结果是多少?想到几种不同的表示方法?
学生量出课桌面的长是60厘米,宽是40厘米,并用600毫米、60厘米、6/10米等表示课桌面的长,用400毫米、40厘米、4/10米等表示课桌面的宽。(根据学生回答,板书:6分米=6/10米,4分米=4/10米)
提问:除了上面几种表示形式外,你还能用其他方法来表示吗?
如果学生主动想到分别用0.6米、0.4米表示课桌面的长和宽,则让学生说一说是怎样想到的,0.6米和0.4米分别表示什么意思。
如果学生不能主动地用小数来表示,则讲述:其实,6/10米还可以用小数0.6米来表示,0.6读作零点六。(板书:= 0.6米 0.6读作零点六)也就是说把1米平均分成10份,其中的6份可以用0.6米表示。
提问:你能说一说0.6米表示的意思吗?
学生回答后,让同桌间互相说一说。
引导:那么4/10米还可以怎样用小数来表示呢?(板书:0.4米 0.4读作零点四)
提问:0.4米表示什么意思?
再问:那么你知道1分米是几分之几米吗?用小数怎么来表示呢?2分米、5分米、8分米呢?
学生交流时,分别让学生在米尺上指出0.1米、0.5米、0.8米的实际长度。
小结:十分之几米可以写成零点几米。
3. 做“想想做做”第1题。
先让学生弄懂题意,然后把答案填在书上。完成后,电脑出示答案,集体校对。
4. 教学第二个例题。
谈话:昨天三(5)班的李萍同学在育才商店里买了这样一些文具用品。我们一起来看看吧。
出示文具的图片及标价:
铅笔 圆珠笔 笔记本
3角 1元2角 3元5角
提问:一枝铅笔是3角钱,如果用元作单位,是多少元呢?(分别用3/10元和0.3元表示,并读一读、写一写。)
讨论:一枝圆珠笔的'价钱是1元2角,怎样用元作单位,用小数来表示圆珠笔的价钱呢?请先在小组里讨论讨论,再说一说你是怎样想的。
反馈时,着重引导学生体会:1元2角是1元多2角,2角可以用0.2元来表示,1元和0.2元合起来就写成1.2元,1元2角可以写成1.2元。(板书:1元2角= 1.2元 1.2读作一点二)
提问:一本笔记本的价钱是3元5角,用元作单位的小数又怎么来表示呢?你是怎么想的?(板书:3元5角=3.5元 3.5读作三点五)
小结:几元几角写成小数就是几点几元。
5. 做“想想做做”第2题。
让学生在书上完成填空,并说一说是怎样想的。
6. 介绍自然数和整数。
让学生自由阅读书本第100页的最后一段,提出不懂的问题。
7. 游戏。
男同学代表整数,女同学代表小数,看到你所表示的数请你站起来。
8 0.2 3.8 0 59 95.4 1 1/4 1.6
三、 竞赛激趣,拓展延伸
谈话:我们已经认识了小数。现在我们以小组为单位,一起来进行比赛好吗?
1. 听录音,把听到的小数记录下来。
一只青蛙跳过0.4米的田埂,来到宽16.8米的河面上,踏上了0.2平方米的荷叶,狂叫三声,扑通一声掉进了深3.9米的河里。
2. 做“想想做做”第3题。
出示题目,让学生抢答,并说一说每道题中分数、小数的意义。
3. 回答下面的问题。
一包上好佳,价钱在1元到2元之间,请你猜猜它的价钱是多少?
小组合作讨论后把价钱写在纸上,交流时引导学生用“几元几角”和“几点几元”两种方式表达,并在数轴上分别找出每种可能价钱所在的点。
四、 全课总结
提问:今天你学得开心吗?你有什么收获?
五、 拓展
课件介绍十进分数的发展史和古代数学家刘徽的杰出成就。
比的意义教学设计14
教学内容:
人教版小学数学教材五年级上册第62~63页及练习十四第1~3题。
教学目标:
1。借助天平及式子的分类操作,使学生初步了解方程的意义;能从形式上判别一个式子是否是方程;理清方程与等式的关系。
2。能根据简单的线段图、情境图列出方程,并能在教师引导下找到等量关系,经历利用等量关系进行方程模型建构的过程。
3。在对式子的分类、整理的教学活动中培养学生观察、描述、分类、抽象、概括及应用等能力。
教学重点:
抓住“等式”“含有未知数”两个关键词初步建立方程的概念。
教学难点:
方程与等式的关系;方程中等量关系的建立。
教学准备:
课件、写式子的卡片、磁钉。
教学过程:
一、认识天平,谈话铺垫
教师(出示天平图):这是什么?同学们知道天平的用途吗?
一般在称东西时,我们在天平的左边放上要称的东西,右边放上砝码。如果天平左右两边达到平衡,左边东西的质量就等于右边砝码的质量。这种平衡的状态如果用一个数学符号来表达,就是──等号。
二、探究新知
(一)天平演示,初步感知等与不等。
1。出示天平图1。
现在这种状态,你能用一个式子来表示吗?(板书:50+50=100)
2。(出示天平图2和图3)天平向左倾斜表示什么?如果水的质量用
g表示,那么杯子和水共重多少呢?(100+)
3。如果老师在天平右边再加一个100 g的砝码,可能会出现什么样的情况?用式子来表示。
这三个式子体现在天平上分别是什么样的情况?咱们用手势来表示一下。
4。来看看究竟是哪种情况?(先出示天平图4,后出示天平图5)用式子来表示一下。
5。(出示教材第63页最上面的图)这样的图你能用一个式子表示它们的关系吗?
【设计意图】通过直观演示,感受等与不等。同时通过反馈和追问,帮助学生感受等式的意义。为下一环节中式子的分类及理解等式和不等式做好准备。从天平到式,再从式到天平图,在学生的头脑中利用天平建立左右相等的等式模型,为突破建立方程中的等量关系这一难点做好铺垫。
(二)分类整理,建构概念
1。观察黑板上出现的式子,尝试根据式子的特点进行分类(先请学生独立思考,再同桌进行交流。)
2。学生反馈,教师根据反馈在黑板上移动式子。
预设1:按左右相等和不等分类(补充等式和不等式);
预设2:按是否含有未知数分类。
注:教师在按照两种分类方式摆放式子时整理成如下表格所示:
含有未知数
不含有未知数
等式
不等式
3。(指表格)像这样,含有未知数的等式称为方程(揭题)。
4。写方程:根据你的理解写2~3个方程,写完之后给同桌看看其是否为方程(教师在巡视过程中选择一些学生到黑板上写一写。)
5。说说黑板上同学写的是否为方程,并说说判断理由(主要使学生明确,判断一个式子是不是方程,一看是不是等式,二看有没有未知数。)
(三)概念辨析,理清等式与方程之间的关系
1。“做一做”第1题:请学生说说哪些式子是方程,并说说为什么(可以选择其中几个不是方程的式子,请学生说说怎样改一下就可以将其变成方程。)
2。这两个式子是否是方程呢?
反馈分析:
(1)式1:一定是。为什么?
(2)式2:一定是等式,可能是方程。
(3)思考:等式和方程有什么联系呢?
(4)引导画集合图,并引导得出:方程一定是等式,等式不一定是方程。
【设计意图】方程与等式的关系是本节课的教学难点,教学时,先通过分类整理让学生对等式与方程的关系产生直观、正确的`感知;然后通过被蘸了墨水的式子的判别,进一步体会两者的关系;最后,通过韦恩图帮助学生加以明确。不仅突破了教学的难点,而且渗透了初步的集合思想。
三、实践反思,巩固提高
1。“做一做”第2题及练习十四第2题:看图列出方程。
学生练习并进行反馈。
反馈侧重:使学生明确,可以根据量相等来列出方程。
2。练习十四第3题:看情境图,思考数量关系再列方程。
(1)从图上你知道了什么?
(2)你能根据你知道的数量关系列出方程吗?
(3)学生自行根据数量关系列出方程,并进行反馈。
【设计意图】能用方程表达简单情境中的数量关系,也是《义务教育数学课程标准(20xx年版)》对本内容的要求,为从数量关系到等量关系的转变做好准备,这对于学生理解和掌握方程的知识至关重要。
四、总结回顾,介绍历史
1。你对方程印象最深的是什么?(每个同学说一点,后面的同学要和前面同学不一样。)
2。教师介绍方程的相关知识。(课件出示教材第63页“你知道吗?”的内容)
【设计意图】把数学史融入课堂教学当中,一方面可以拓展学生的视野,让学生对方程的产生过程产生比较清晰的认识,知道数学是一个动态成长的科学,体会到数学的每一个理论和发展是一个漫长的过程。让学生在体会数学文化的价值的同时,产生探索的欲望。
比的意义教学设计15
教学设想:
本文位于苏教版说明文第一板块“科学之光·探索与发现”的第二篇,属于自学选教课文。文本侧重于人类在科学领域的探究,对客观世界内在规律的把握,同时对科学的价值进行认识与思考,享受发现与探索的无穷乐趣。编者的意图是,借该篇培养学生自主阅读科学说明文的能力。本文的阅读也没有什么难度,教学时以自读把握信息为主。
目标要求:
1、能够筛选主要信息,把握文章脉络。
2、继续了解说明文的特点,理解说明方法,体会说明文的语言特色。
3、了解科学探索应该具备的品格,并培养自己良好的素养。
课时设置:
1教时。
过程:
一、导入(本文的属性与教学要求)
本文的属性——学术报告,演讲稿,所以语言通俗易懂。文章在结构上,也为了适应学术演讲的需要而安排得条理清楚,纲目分明。学习中,要善于筛选主要信息,把握文章脉络;理解说明方法,体会说明文的语言特色。
二、解题
20世纪初期,人类发现了生命的'基本规律之一--遗传规律。20世纪50年代初,英国和美国的科学家提出遗传物质DNA的双螺旋模型,打开了人类认识生命奥秘的大门。70年代开始的DNA克隆技术和后来蓬勃发展的转基因技术、动物植物克隆技术.让人类对生命奥秘有了进一步的认识。与此同时,人们还发现,几乎人类所有的疾病都与基因有关。在这样的背景之下,人类基因组计划诞生了。目的是为了解决人类健康问题,并以此带动生物信息产业的发展。
人类基因组计划最早在1985年由诺贝尔奖获得者、美国的杜尔贝克提出。1990年10月,国际人类基因组计划正式启动。中国于1999年9月获准加人人类基因组计划并承担了l%的测序任务。本文作者杨焕明教授为争取和主持完成中国参与人类基因组1%序列的测定立下汗马功劳。在这篇文章中,作者对这一计划尤其是实施这一计划的意义作了详细的说明。
三、指导阅读理解
1、先自读课文,再和同学合作,试制作出作者演讲时放映的提纲幻灯片,再看看文章呈现怎样的逻辑结构。
2、学生上讲台投影展示提纲幻灯片
一、(1-2)人类基因组计划的启动及其宗旨与目标。
二、(3-10)计划的意义。
(一)规模化
(二)序列化
(三)信息化
(四)医学化
(五)产业化
(六)人文化
三、(11-18)这一计划对人类社会生活的影响。
(一)基因平等,需善待他人
(二)遗传平等,需善待自己
(三)基因属于隐私,需要尊重
(四)促进人性文明、社会和谐
1、知情权
2、基因组研究的非和平使用的可能性
总分结构。条理清楚,一目了然,归纳总结,纲目清楚。)
3、浏览课文,看看本文运用了哪些说明方法,请举例说明。
(下定义:“人类基因组计划……重大工程。”
列数字:“人类基因组计划……技术人员参加。”
举例子:“这些细微差异……极为少见。”
这些方法的使用都使得说明更清楚、通俗。)
4、体会本文语言通俗的特点。本文语言通俗性表现在哪里?
(除了绕不过去的专业术语外,尽量用大众化、通俗形象的语言,收到很好的科普效果。)
四、课堂练习
阅读下面文字,完成7~10题。
第三是信息化。人类基因组计划的成功,是借助了生物信息学,也借助于把地球变小的网络。没有它们,国际人类基因组计划的协调与全世界的及时公布是不可能的。没有全部的软件与硬件,人类基因组计划的一切都不可能。序列一经读出,它的质控、组装,以至于递交、分析都有赖于生物信息学,而从现在开始,序列的意义完全决定于生物信息学。没有电子计算机的分析与正在爆炸的信息的比较,序列又有何用?而且信息化又改变了整个生命科学,改变了实验对象存在的方式。今天的生物学实验可能大部分工作是分析序列信息。
1、文中加点的“它们”的具体内容是什么?
(生物信息学和“把地球变小的网络”)
2、文中加点的词语“质控”“组装”“递交”“分析”能否调换顺序?为什么?
(不能。“以至于”表示递进关系。)
3、文中加点的“可能大部分”去掉行不行,为什么?
(不能。体现说明文语言的严密性、科学性。)
4、文段中划线的句子的含义是什么?
(序列需要借助了生物信息学。)
【比的意义教学设计】相关文章:
比的意义教学设计05-18
分数的意义教学设计06-16
《小数的意义》教学设计05-16
分数的意义和性质教学设计05-19
《小数的意义》教学设计15篇05-20
四年级《小数意义》教学设计08-21
《比的意义》 03-12
比的意义 11-17
“比的意义” 03-10
《比的意义》 08-28