乘法分配律说课稿
作为一名老师,有必要进行细致的说课稿准备工作,说课稿有助于顺利而有效地开展教学活动。优秀的说课稿都具备一些什么特点呢?下面是小编为大家整理的乘法分配律说课稿,欢迎大家分享。
乘法分配律说课稿1
一、说教材
(一)教学内容在教材中的地位和作用
本课的教学内容是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元的教学重点,也是本节课内容的难点,教材将乘法分配律与传统的相遇问题有机地结合在一起,合理整合知识,让学生在解决实际问题的过程中理解乘法分配律,注重引导学生运用猜想、验证、比较、归纳等方法解决问题,提高教学效率。学习这部分教学内容有利于提高学生的观察能力、比较能力和概括能力。同时,学好乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的计算能力有着重要的作用。
(二)教学重点、难点的确定
新的数学改革强调,现实的和探索性的数学学习活动要成为数学学习内容的有机组成部分。所以,我把本课的重点确定为引导学生发现乘法分配律及理解含义上;因乘法分配律不是单一的乘法运算,还涉及到加法运算,为此在理论算术中又称之为乘法的分配性质,理解起来有一定的难度,所以,我把本节课的难点也确定为理解掌握乘法分配律上。
(三)学情分析
学生已经学习掌握了乘法交换律、结合律,并能够初步应用这些定律进行一些简便计算的基础上接着学习“乘法分配律”不会觉得太难,但是学生的概括、归纳能力还是一个薄弱的环节。
二、说教学目标
根据《大纲》要求,教学内容和学情,本节课我制定如下教学目标。
(一)知识目标:
学会解答相遇问题,在解答实际问题的过程中理解乘法分配律。
(二)智能目标:
借助已有经验和具体运算,初步学会用猜想、验证、比较、归纳等数学方法学习知识。
(三)情感目标:
使学生欣赏到数学运算简洁美,体验“乘法分配律”的价值所在,从而提高学习数学的兴趣和学习数学的主动性。
三、说教法与学法
(一)教学方法
在设计求平均数的教学时,利用问题情境,以解决问题为线索,让学生在独立思考、合作探究的过程中,充分发挥学生的自主性、能动性,把课堂还给学生,让学生多思、多说、多练,使学生由被动的学习转为积极主动参与的学习。
(二)学法指导
本节课以学生自主学习、自主探索为主,通过学生的自学、运用等学习形式,让学生去感受数学问题的探索性和挑战性。通过学生多思、多说、多练,积极参与教学的整个过程。
(三)教学准备
多媒体课件
四、说教学程序? (共分四个环节)
一、创设情境,激趣引入。
师:你了解我国高速公路的一些情况吗?山东境内有哪几条主要的高速公路?你
知道济青高速公路的情况吗?
学生在小组内交流课前收集的有关资料,师简要介绍我国及山东省高速公路发展
情况。(板书课题)
出示情境图,引导学生观察。你从图中得到了哪些信息?根据图中的信息你
能提出什么数学问题?(引导学生提出有关乘法的问题)
学生交流,师适当板书:济青高速公路全长约多少千米?
【青岛版教材的一大特点是:()突出问题意识的.培养。这一环节中让学生自己发现问题――提出问题――解决问题,培养学生收集和处理数学信息的能力。极大地提高了学生的学习兴趣,带入学生进入学习过程。】
紧接着进入第二环节:
二、合作探索,发现规律
本环节意在引导学生通过已有经验和具体运算,在观察、猜想、比较、归纳、验证、
与交流的数学活动中,理解乘法分配律。具体可分四步进行:
1、解决问题
师:“济青高速公路全长约多少千米?”这个问题怎么解决?
学生先独立思考,小组探究,全班交流:求济青高速公路全长就是求两辆车两小
时行驶的路程和。师根据学生的交流,进一步借助课件或画出线段图,表示出解决这个问题
的两种思路。学生独立列式计算,集体交流后,师适当板书。一种思路是先求每辆车分别行
驶的路程,再求公路的全长。110×2+90×2=400(千米)。一种是先求两辆车1小时行驶的
路程和,再求2小时行驶的路程和。(110+90)×2=400(千米)
2、观察猜想
师:观察、比较上面两个算式,你有什么发现?
学生思考交流,师引导学生重点从计算结果、算式的结构和计算方法上进行比较。
师:根据前面所学的定律,结合刚才的发现,你有什么想法?
学生交流,提出猜想。(110+90)×2和110×2+90×2可能相等。
3、验证猜想:
你们能想办法验证自己的猜想吗?
学生小组合作,举例验证,并进行记录,全班汇报交流。
师:你们真了不起!刚才你们发现的规律:两个数的和与一个数相乘,可以把这
两个加数分别与这个数相乘,再把积相加,这个规律叫做乘法分配律。学生仿照(110+90)×2和110×2+90×2写算式。验证揭示了这些例子共同特点,就是两个数的和乘一个数等于和里的每一个加数……在举例验证的过程中提示学生可以使用计算器。
4、用字母表示规律,你能用字母把它表示出来吗???? 学生尝试表示,师板书。
再次凸现乘法分配律的含义:(a+b)?c=a?c+b?c.
三、巩固练习
1、自主练习第一题,学生独立完成,订正时,指生交流是怎么链接的,为什么
这样链接?
2、第二题,学生独立完成,交流时说说这样填写的理由。
3、第三题,学生独立判断对错,在小组内交流结果,说说错的原因并将错误的
算式进行纠正。
四、总结评价
师:这节课上你有什么收获?你能评价一下你和小组同学的表现吗?
板书设计:
方法一? 110×2+90×2=400
方法二? (110+90)×2=400
乘法分配律说课稿2
各位教师:
大家好!
下头,我就《乘法分配律》一课,谈一谈我的设计理念及设计意图。
第一部分:导入部分
引入数学家波利亚的话:“学习任何知识的最佳途径,都是由自我去发现、探索、研究,这样理解更深刻。”其设计意图是,激发孩子们求知的、探索的欲望,为新课的学习创设情境。
第二部分:主体部分,分三个环节
环节一:尝试性练习(课件出示的那两道练习题),试用两种方法解题,能够小组讨论,然后派代表发言。
设计意图:数学知识源于生活,又服务于生活。实践证明,补充实例,让学生试探,比直接出示例三更有利于集中注意力解题,突出算式特点,进而为理解乘法分配律的生成过程与变成特做铺垫,有利于突破教学难点。
环节二:教学例3,提出问题——看主题图找已知条件——口述编题——解决问题——梳理算法——发现规律。
设计意图:引领学生观察上头每组算式的结构特点,并经过比较——三组不一样的算式的结果相同,证明三个算式有相等关系——让学生历经确定与归纳推理的过程,进而发现、总结一般规律:左边是两个数的和同一个数相乘,右边是这两个加数分别同这个数相乘,再把积相加,结果相等。——引出乘法分配律结论。这就降低了难度,收“水到渠成”之效。
环节三:以你能否用一个式子表示乘法分配律这一设计,巧妙引导学生用字母表示乘法分配律。让学生历经归纳推理和抽象概括的过程。
第三部分:总结部分
让学生谈自我听课的收获。有的同学说,我明白了什么是乘法分配律,有的同学说我会用乘法分配律了,还有的说,我发现利用乘法分配律解题很简便。这就到达了教学目的,取得了很好的教学效果。
不仅仅如此,教师提出质疑:向学生提出,你认为乘法分配律同乘法交换律和结合律的.最大区别是什么?这一点教师有必要指出,让学生清楚。
同时让学生也提出质疑:你还有什么问题提出:
如:(1)在乘法与减法的运算中是否存在乘法分配律。
(2)在除法中是否存在分配律。
这就是课堂的延伸,知识的延续,学生提出了很有价值的实际问题。
最终教师畅谈:真是“海阔凭鱼跃,天高任鸟飞”啊!期望同学们尽情地知识的海洋里遨游,结束本课教学。
教学过程是一个不断探讨的过程,不断追寻的过程。当然,在我的教学过程中必须存在不足之处,敬请各位提出宝贵意见,最终把一句话送给大家:记录真实的课堂,定格精彩的瞬间,触摸细节的意蕴,让每节课发出自我的声音。多谢大家!
乘法分配律说课稿3
一、说教材:
(一)教学内容在教材中的地位和作用。本节课是人教版九年义务教育小学数学第八册P64 — 65页的《乘法分配律》,本课的教学内容是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元的教学重点,也是本节课内容的难点,教材是按照分析题意、列式解答、讲述思路、观察比较、总结规律等层次进行的。学习这部分教学内容有利于提高学生的观察能力、比较能力和概括能力。同时,学好乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的计算能力有着重要的作用。
(二)学情分析。学生已经学习掌握了乘法交换律、结合律,并能够初步应用这些定律进行一些简便计算的基础上接着学习“乘法分配律”不会觉得太难,但是学生的概括、归纳能力还是一个薄弱的环节。
二、说目标
根据《新课程理念》、教学内容和学情,本节课我制定如下教学目标。
(一)知识目标:使学生在解决实际问题的过程中发现并理解乘法分配律。
(二)智能目标:使学生在发现规律的过程中,发展比较、分析、抽象和概括能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。
(三)情感目标:使学生能联系现实问题主动参与探索、发现和概括规律的学习尘埃,感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功感,增强学习的兴趣和自信。
教学重点:在解决实际问题的过程中发现并理解乘法分配律
教学难点:自主发现规律,抽象归纳,并能用符号、语言或其他方式与同伴交流规律。
三、说教法学法
教学有法,教无定法。新课程以学生的发展为本,这是现代教育的根本目标,也是我们每一堂课教学的根本目标。新的理念提倡人人学有价值的数学,从获得必要的数学,不同的人在数学上得到不同的发展。根据这一总体目标,我采用了以下的方法:
(一)说教法。兴趣是一个人学习的动力,是最好的老师。在教学过程中,我运用启发式教学,根据小学生的心理特征和谁知规律,设计一些引人入胜的学习情境来激发学生的学习兴趣,调动学生的学习热情。同时在练习的过程中注意练习的层次和坡度,设计一些易混题,最后设计一个找朋友的游戏,让学生积极参与,既活跃了课堂气氛,又能充分发挥学生学习的积极性和主动性,充分体现教师的主导作用和学生的主体地位。
(二)说学法。动参与,乐于探究。新课程标准指出学生是学习的主人,教师只是学习的组织者,引导者和合作者,学生始终参与教学活动中。因此在教学过程中,我先出示了学生的生活情景图,让学生去解决实际问题,并通过解决问题发现了乘法分配律。合作交流,体会规律。在教学过程中,以小组合作的开工,充分调动学生的积极性,主动性,让学生有充分的时间和机会通过观察、交流、反思等活动,提升思维品质,发展创新意识。通过学生多思、多说、多练。积极参与教学的整个过程。
四、教学准备:
多媒体课件投影仪
五、说教学过程
(一)创设问题情境
五一就要举行艺术节的比赛了,为了这次艺术节,教师和同学们都花了很多的精力,这不,我们学校教舞蹈的叶老师正利用星期天,去为舞蹈组的小演员们挑选漂亮的演出服呢?(课件出示商店场景)
【设计意图】创设一个充满现实的问题情境,使学生认识到现实生活中蕴涵着大量的数学信息,并主动积极地带着自己的知识背景、活动经验和理解走进课堂。
(二)展开探索过程
1、初步感知
(1)提出要求:仔细观察,从图中你获得了哪些信息?买这些些服装,叶老师一共要付多少元钱呢?你能用两种方法列出综合算式吗?
(2)学生独立列式,教师巡视
(3)交流反馈:你是怎么想的,怎样列式
板书:65×5+45×5;(65+45)×5。请生交流解题思路,并比较哪种解法更简便。
(4)列成等式。通过计算,我们发现这两种解法虽列式不同,但都能解决问题。那么我们在这两个算式之间用什么符号来表示它们的得数是相等的.呢?小结:虽然这两个算式样子不同,但是计算结果是相等的。我们就可以把两个算式写成一个等式。
2、类比展开
(1)提出类比问题:如果叶老师选择选择的是另两种服装,买的数量都是6件、或8件的,你还能用两种方法来求一共要付多少元吗?
(2)要求:每一小组编一题,用两种方法列出综合算式,并计算出结果,比一比哪组完成得又快又好!
(3)学生小组合作完成,交流反馈,相机板书:
32×6+65×6
(32+65)×6
32×8+65×8
(32+65)×8
32×6+45×6
(32+45)×6
32×8+45×8
(32+45)×8
(4)观察算式,引导列成等式,仿照等式随意举例
像这样的情况,是偶然巧合还是有其中的规律呢?大家不妨再举几个例子,再算一算。
举例,小组交流,挑选几组板书。
【设计意图】从生活中的实际问题出发,在学生独立思考、探索的基础上引导有效的交流,在交流中相互启发,通过观察、类比列举使学生对乘法分配律有所初步感知,形成丰富的数学活动经验,而且也掌握了一学习数学的方法。
3、体验感悟
(1)观察这些算式,或小声地读一读这些算式,这中间隐藏着什么规律呢?
学生有自己的语言描述发现的规律。
(2)修改算式,感悟规律
通过观察,同学们或多或少都发现了一些规律,现在老师给每个小组提供了一些算式,根据你刚才的观察,你觉得这些算式中,哪两个可以用等号连起来就把它们挑出来,如果有争议可以算一算来验证一下。
课件出示:
(3+4)×6
3×6+4×6
3×17+3×5
3×(17+5)
20×(5+13)
20×5+5×13
(13+7)×4
13×4+7
(13+7)×4
13×4+7
交流反馈有哪几组等式。让生想办法修改那些不能组成等式的,使它们变成等式。
【设计意图】充分体现了学生学习的主体地位,学生通过解决问题,类比列举、观察感悟、反思纠错等多种学习活动,培养了学生的学习能力,生动活泼地建构起对数学富有个性理解的过程。
4、揭示规律
(1)游戏“交朋友”
课件出示:(80+20)×4,谁是它的好朋友?(80和20打着伞,一块去和4交朋友,4可最热情了,它和80握握手,又和20握握手,多公平啊,80和20高兴地把伞都丢掉了)
出示:6×(10+20)(A+100)×5,(42+45)×▲,请生帮它们交朋友
(2)揭示规律
像这样的等式写得完吗?你能用自己的方式把这些等式中存在的规律表示出来吗?请同学们先在小组里说一说。
反馈时引导学生用不同的方式表达。(学生可能用语言描述,可能用字母表示……)
用字母表示:〔a+b〕×c=a×c+b×c
用语言叙述:两个数的和乘第三个数,可以把这两个数分别和第三个数相乘,再求和。
任何事物都可以从正反两方面去看,你们反着读一读用字母表示的等式,你能给下面两个算式找到朋友吗?35×8+65×8
9×18+9×282
【设计意图】从数学的角度来看,数学要比生活更重要。数学毕竟不是生活经验的“照片”,而是对生活经验进行重组、加工,逐步抽象打手成数学模型,它反映的是事物之间的关系和规律,它来源于生活而又远远高于生活。所以,前面的教学环节是为了学生更好地理解和掌握数学知识,在学生有所感悟,但不能用规范的数学语言进行概括时,及时数学化,有效地引导学生小结规律,使教学目标得以顺利完成。
(三)巩固内化
1、根据乘法分配律,在__里填入合适的数
(1)、(15+23)×2=____×2+_____×2
(2)、(37+12)×16=37×____+12×____
(3)、___×___+___×___=(16+26)×8
(4)、(125+11)×8=____×____+____×_____
(5)、276×38+276×62=____×(___+___)
如果计算的话,(4)、(5)你会选择左边的算式还是右边的算式进行计算,为什么?
2、判断下面各题是否正确,把错误的改正过来
(1)2×15+4×15=(2+4)×15………………()
订正:
(2)5×(20+6)=5×20+6……………………()
订正:
(3)8×23+8×27=8×23+27……………………()
订正:
(4)9×(6×4)=9×6+9×4……………………()
订正:
3、应用题
一块长方形的桌面,长68厘米,宽32厘米。周长是多少厘米?(用两种方法解答,并说说你喜欢哪种方法)
*4、用简便方法计算(任选一题)
①(125+9)×8 ②128×31—28×31 ③43×5+46×5+11×5
小结:有时是先乘再求和比较简便,有时是先求两数的和再乘比较简便,大家要根据实际情况的不同,灵活对待。
【设计意图】练习的设计不仅紧紧围绕教学重点,而且注重练习的层次和坡度。基本练习形式多样,达到了双基训练扎实的效果。由于刚刚学习了乘法分配律,为使学到的知识能更好地纳入到原有的已有知识体系里,必须进行一定量的、针对性强、有实效的基本练习。
(四)总结回顾
今天这节课,你有什么收获,从中你得到什么启发?
【设计意图】“收获”既有知识的习得,也有情感上的感受及所得,反思的效果很明显。
(五)课堂作业
六、说板书设计
乘法分配律
例:短袖衫裤子夹克衫
32元45元65元两个数的和乘第三个数,可以把这
65×5+45×5=(65+45)×5两个数分别和第三个数相乘,再求和。
=325+225=110×5
=550(元)=550(元)
其他购买方案:
32×6+65×6=(32+65)×6
32×8+65×8=(32+65)×8
32×6+45×6=(32+45)×6
32×8+45×8=(32+45)×8
〔a+b〕×c=a×c+b×c
乘法分配律说课稿4
一、教材
《乘法分配律》是学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。
二、教学目标及重难点
教学目标:使学生认识理解和掌握乘法分配律,会应用乘法分配律进行简便计算。培养学生的分析、比较、综合能力以及初步的抽象概括能力。
教学重点:理解乘法分配律。
教学难点:应用乘法分配律进行计算。
三、教法、学法
教法:情景教学法。
学法:小组合作法。
四、教学过程
1、情景引入
首先,利用精美课件“购物情景”引入:上衣每件65元,裤子每条35元。
问题:①买5件上衣和5条裤子,一共要付多少元?
问题:②买5套这样的衣服,一共要付多少元?
这样引入目的在于创设一个充满趣味的问题情境,使学生认识到现实生活中蕴含着大量的数学信息,并主动积极的带着自己的知识背景、活动经验和理解走进课堂。
2、解决问题,感知规律
(1)让学生合作完成,男同学解答问题①得到65×5+35×5=500(元)。
女同学解答问题②得到(65+35)×5=500(元)
(2)通过分析,两个问题实际上是一样的,两个算式应该相等。即:65×5+35×5=(65+35)×5。
(3)新课标强调要让学生经历、体验知识获得的过程,主动参与探索,从而发现规律。在学生独立解答的过程中,我会重点引导学生感悟问题①和问题②的共同特征:买了同样的衣服,体会规律形成的过程。
3、检验规律,建立模型
出示第二道题:
张大伯有一块长7米、宽2米的长方形菜地,李大伯有一块长3米、宽2米的长方形菜地,两个大伯的菜地一共有多少平方米?
(1)由学生独立完成,有7×2+3×2和(7