首页 申请书推荐信华体会电子竞技 通知工作总结华体会体育2串1 策划书工作报告合同演讲稿职业规划
当前位置:98158范文网>教育范文>说课稿>高中数学说课稿

高中数学说课稿

时间:2024-06-25 16:29:11 说课稿 我要投稿

高中数学说课稿

  作为一名辛苦耕耘的教育工作者,可能需要进行说课稿编写工作,借助说课稿可以更好地组织教学活动。快来参考说课稿是怎么写的吧!以下是小编精心整理的高中数学说课稿,欢迎阅读,希望大家能够喜欢。

高中数学说课稿

高中数学说课稿1

  教学目标

  (1)正确理解加法原理与乘法原理的意义,分清它们的条件和结论;

  (2)能结合树形图来帮助理解加法原理与乘法原理;

  (3)正确区分加法原理与乘法原理,哪一个原理与分类有关,哪一个原理与分步有关;

  (4)能应用加法原理与乘法原理解决一些简单的应用问题,提高学生理解和运用两个原理的能力;

  (5)通过对加法原理与乘法原理的学习,培养学生周密思考、细心分析的良好习惯。

  教学建议

  一、知识结构

  二、重点难点分析

  本节的重点是加法原理与乘法原理,难点是准确区分加法原理与乘法原理。

  加法原理、乘法原理本身是容易理解的,甚至是不言自明的。这两个原理是学习排列组合内容的基础,贯穿整个内容之中,一方面它是推导排列数与组合数的基础;另一方面它的结论与其思想在方法本身又在解题时有许多直接应用。

  两个原理回答的',都是完成一件事的所有不同方法种数是多少的问题,其区别在于:运用加法原理的前提条件是,做一件事有n类方案,选择任何一类方案中的任何一种方法都可以完成此事,就是说,完成这件事的各种方法是相互独立的;运用乘法原理的前提条件是,做一件事有n个骤,只要在每个步骤中任取一种方法,并依次完成每一步骤就能完成此事,就是说,完成这件事的各个步骤是相互依存的。简单的说,如果完成一件事情的所有方法是属于分类的问题,每次得到的是最后结果,要用加法原理;如果完成一件事情的方法是属于分步的问题,每次得到的该步结果,就要用乘法原理。

  三、教法建议

  关于两个计数原理的教学要分三个层次:

  第一是对两个计数原理的认识与理解。这里要求学生理解两个计数原理的意义,并弄清两个计数原理的区别。知道什么情况下使用加法计数原理,什么情况下使用乘法计数原理。(建议利用一课时)。

  第二是对两个计数原理的使用。可以让学生做一下习题(建议利用两课时):

  ①用0,1,2,……,9可以组成多少个8位号码;

  ②用0,1,2,……,9可以组成多少个8位整数;

  ③用0,1,2,……,9可以组成多少个无重复数字的4位整数;

  ④用0,1,2,……,9可以组成多少个有重复数字的4位整数;

  ⑤用0,1,2,……,9可以组成多少个无重复数字的4位奇数;

  ⑥用0,1,2,……,9可以组成多少个有两个重复数字的4位整数等等。

  第三是使学生掌握两个计数原理的综合应用,这个过程应该贯彻整个教学中,每个排列数、组合数公式及性质的推导都要用两个计数原理,每一道排列、组合问题都可以直接利用两个原理求解,另外直接计算法、间接计算法都是两个原理的一种体现。教师要引导学生认真地分析题意,恰当的分类、分步,用好、用活两个基本计数原理。

高中数学说课稿2

尊敬的各位评委、各位老师:

  大家好!我说课的题目是《直线的点斜式方程》,选自人民教育出版社普通高中课程标准试验教科书数学必修2(A版),是第三章直线与方程中的第2节的第一课时3.2.1直线的点斜式方程的内容。下面我将从教学背景、教学方法、教学过程及教学特点等四个方面具体说明。

  一、教学背景的分析

  1、教材分析直线的方程是学生在初中学习了一次函数的概念和图象及高中学习了直线的斜率后进行研究的。直线的方程属于解析几何学的基础知识,是研究解析几何学的开始,对后续研究两条直线的位置关系、圆的方程、直线与圆的位置关系、圆锥曲线等内容,无论在知识上还是方法上都是地位显要,作用非同寻常,是本章的重点内容之一。“直线的点斜式方程”可以说是直线的方程的形式中最重要、最基本的形式,在此花多大的时间和精力都不为过。直线作为常见的最简单的曲线,在实际生活和生产实践中有着广泛的应用。同时在这一节中利用坐标法来研究曲线的数形结合、几何直观等数学思想将贯穿于我们整个高中数学教学。

  2、学情分析我校的生源较差,学生的基础和学习习惯都有待加强。又由于刚开始学习解析几何,第一次用坐标法来求曲线的方程,在学习过程中,会出现“数”与“形”相互转化的困难。另外我校学生在探究问题的能力,合作交流的意识等方面更有待加强。根据上述教材分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标:

  3、教学目标

  (1)了解直线的方程的概念和直线的点斜式方程的推导过程及方法;

  (2)明确点斜式、斜截式方程的形式特点和适用范围;初步学会准确地使用直线的点斜式、斜截式方程;

  (3)从实例入手,通过类比、推广、特殊化等,使学生体会从特殊到一般再到特殊的认知规律;

  (4)提倡学生用旧知识解决新问题,通过体会直线的斜截式方程与一次函数的关系等活动,培养学生主动探究知识、合作交流的意识,并初步了解数形结合在解析几何中的应用。

  4、教学重点与难点

  (1)重点:直线点斜式、斜截式方程的特点及其初步应用。

  (2)难点:直线的方程的概念,点斜式方程的推导及点斜式、斜截式方程的应用。

  二、教法学法分析

  1.教法分析:根据学情,为了能调动学生学习的积极性,本节课采用“实例引导的启发式”问题教学法。帮助学生将几何问题代数化,用代数的语言描述直线的几何要素及其关系,进而将直线的问题转化为直线方程的问题,通过对直线的方程的研究,最终解决有关直线的一些简单的问题。另外可以恰当的利用多媒体课件进行辅助教学,激发学生的学习兴趣。

  2.学法分析:学生从问题中尝试、总结、质疑、运用,体会学习数学的乐趣;通过推导直线的点斜式方程的学习,要了解用坐标法求方程的思想;通过一个点和方向可以确定一条直线,进而可求出直线的点斜式方程,要能体会“形”与“数”的转化思想。下面我就对具体的教学过程和设计加以说明:

  三、教学过程的设计及实施

  整个教学过程是由六个问题组成,共分为四个环节,学习或涉及四个概念:温故知新,澄清概念————直线的方程深入探究,获得新知————————点斜式拓展知识,再获新知————————斜截式小结引申,思维延续————————两点式平面上的点可以用坐标表示,直线的倾斜程度可以用斜率表示,那么平面上的直线如何表示呢?这就是本节要学习的内容。

  (一)温故知新,澄清概念————直线的方程问题一:画出一次函数y=2x+1的图象;y=2x+1是一个方程吗?若是,那么方程的解与图象上的点的坐标有何关系?

  [学生活动]

  通过动手画图,思考并尝试用语言进行初步的表述。

  [教师活动]

  对于不同学生的表述进行分析、归纳,用规范的语言对方程和直线的方程进行描述。

  [设计意图]

  从学生熟知的旧知识出发澄清直线的方程的概念,试图做到“用学生已有的数学知识去学数学”,从而突破难点。通过对这个问题的研究,一方面认识到以方程的解为坐标的点在直线上,另一方面认识到直线上的点的坐标满足方程;从而使同学意识到直线可以由直线上任意一点P(x,y)的坐标x和y之间的等量关系来表示。问题二:若直线经过点A(—1,3),斜率为—2,点P在直线l上。

  (1)若点P在直线l上从A点开始运动,横坐标增加1时,点P的坐标是;

  (2)画出直线l,你能求出直线l的方程吗?

  (3)若点P在直线l上运动,设P点的坐标为(x,y),你会有什么方法找到x,y满足的.关系式?

  [学生活动]

  学生独立思考5分钟,必要的话可进行分组讨论、合作交流。

  [教师活动]

  巡视。肯定学生的各种方法及大胆尝试的行为;并引导学生观察发现,得到当点P在直线l上运动时(除点A外),点P与定点A(—1,3)所确定的直线的斜率恒等于—2,体会“动中有静”的思维策略。

  [设计意图]

  复习斜率公式;待定系数法;初步体会坐标法。同时引导学生注意为什么要把分式化简?(若不化简,就少一点),感受数学简洁的美感和严谨性。还要指出这样的事实:当点P在直线l上运动时,P的坐标(x,y)满足方程2x+y—1=0。反过来,以方程2x+y—1=0的解为坐标的点在直线l上。把学生的思维引到用坐标法研究直线的方程上来,此时再把问题深入,进入第二环节。

  (二)深入探究,获得新知————点斜式

  问题三:

  ①若直线l经过点P0(x0,y0),且斜率为k,求直线l的方程。

  ②直线的点斜式方程能否表示经过P0(x0,y0)的所有直线?

  [学生活动]

  ①学生叙述,老师板书,强调斜率公式与点斜式的区别。

  ②指导学生用笔转一转不难发现,当直线l的倾斜角α=90°时,斜率k不存在,当然不存在点斜式方程;讨论k=0的情况;观察并总结点斜式方程的特征。

  [设计意图]

  由特殊到一般的学习思路,突破难点,培养学生的归纳概括能力。通过对这个问题的探究使学生获得直线点斜式方程;由②知:当直线斜率k不存在时,不能用点斜式方程表示直线,培养思维的严谨性,这时直线l与y轴平行,它上面的每一点的横坐标都等于x0,直线l的方程是:x=x0;通过学生的观察讨论总结,明确点斜式方程的形式特点和适用范围,通过下面的例题和基础练习,突破重难点。

  问题四:分别求经过点且满足下列条件的直线的方程(1)斜率;(2)倾斜角;(3)与轴平行;(4)与轴垂直。[练习]P95.1、2。

  [学生活动]

  学生独立完成并展示或叙述,老师点评。

  [设计意图]

  充分用好教材的例题和习题,因为这些题都是专家精心编排的,充分体现必要性及合理性;做到及时反馈,便于反思本环节的教学,指导下个环节的安排;突破重点内容后,进入第三环节。

  (三)拓展知识,再获新知————斜截式

  问题五:(1)一条直线与y轴交于点(0,3),直线的斜率为2,求这条直线的方程。(2)若直线l斜率为k,且与y轴的交点是P(0,b),求直线l的方程。

  [学生活动]

  学生独立完成后口述,教师板书。

  [设计意图]

  由一般到特殊再到一般,培养学生的推理能力,同时引出截距的概念及斜截式方程,强调截距不是距离。类比点斜式明确斜截式方程的形式特点和适用范围及几何意义,并讨论其与一次函数的关系。通过下面的基础练习,突破重点。

  [练习]P95.3。

  [设计意图]

  充分用好教材习题,及时反馈本环节的教学情况,指导下个环节的安排。

  (四)小结引申,思维延续————两点式

  课堂小结

  1、有哪些收获?(点斜式方程:;斜截式方程:;求直线方程的方法:公式法、等斜率法、待定系数法。)

  2、哪些地方还没有学好?

  问题六:

  (1)直线l过(1,0)点,且与直线平行,求直线l的方程。

  (2)直线l过点(2,—1)和点(3,—3),求直线l的方程。

  [学生活动]

  学生独立思考并尝试自主完成,可以相互讨论,探讨解题思路。

  [教师活动]

  教师深入学生中,与学生交流,了解学生思考问题的进展过程,有时间的话,可以让学生口述解题思路,也可以投影学生的证明过程,纠正出现的错误,规范书写的格式;没时间就布置分层作业。

  [设计意图]

  (1)小题与上一节的平行综合,学生应该有思路求出方程;

  (2)小题解决方法较多,预设有利用公式法、等斜率法、待定系数法,让好一点的学生有一些发散思维的机会,以及课后学习的空间,使探究气氛有一点高潮。另外也为下节课研究直线的两点式方程作了重要的准备。分层作业必做题:P100。A组:1、(1)(2)(3)、5。选做题:P100。A组:1、(4)(5)(6)。

  [设计意图]

  通过分层作业,做到因材施教,使不同的学生在数学上得到不同的发展,让每一个学生都得到符合自身实践的感悟,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展。

  四、教学特点分析

  (一)实例引导。

  在字母运算、公式推导之前,总是用实例作为铺垫,使学生有学习知识的可能和兴趣,关注学困生的成长与发展。

  (二)启发式教学。

  教学中总是以提问的方式叙述所学内容,如:

  1、直角坐标系内的所有直线都有点斜式方程吗?

  2、截距是距离吗?它可以是负数吗?

  3、你会求直线在轴上的截距吗?

  4、观察方程,它的形式具有什么特点?它与我们学过的一次函数有什么关系?等等。启发学生的思维,作好与学生的对话与交流活动。

  (三)注重自主探究。设计问题链,环环相扣,使学生的探究活动贯穿始终。教师总是站在学生思维的最近发展区上,布设了由浅入深的学习环境突破重点、难点,引导学生逐步发现知识的形成过程。设计了两次思维发散点,分别是问题二和问题六的第(2)问,要求学生分组讨论,合作交流,为学生创造充分的探究空间,学生在交流成果的过程中,高效的完成教学任务。

  附:

  板书设计

  屏幕3.2直线的方程3.2.1直线的点斜式方程

  问题一:直线的方程

  问题二:实例引导

  问题三:直线的点斜式方程

  问题四:练习答案

  问题五:直线的斜截式方程截距

  问题六:实例引导,思维延续

高中数学说课稿3

  一、教学目标

  (一)知识与技能

  1、进一步熟练掌握求动点轨迹方程的基本方法。

  2、体会数学实验的直观性、有效性,提高几何画板的操作能力。

  (二)过程与方法

  1、培养学生观察能力、抽象概括能力及创新能力。

  2、体会感性到理性、形象到抽象的思维过程。

  3、强化类比、联想的方法,领会方程、数形结合等思想。

  (三)情感态度价值观

  1、感受动点轨迹的动态美、和谐美、对称美

  2、树立竞争意识与合作精神,感受合作交流带来的成功感,树立自信心,激发提出问题和解决问题的勇气

  二、教学重点与难点

  教学重点:运用类比、联想的方法探究不同条件下的轨迹

  教学难点:图形、文字、符号三种语言之间的过渡

  三、、教学方法和手段

  【教学方法】观察发现、启发引导、合作探究相结合的教学方法。启发引导学生积极思考并对学生的思维进行调控,帮助学生优化思维过程,在此基础上,提供给学生交流的机会,帮助学生对自己的思维进行组织和澄清,并能清楚地、准确地表达自己的数学思维。

  【教学手段】利用网络教室,四人一机,多媒体教学手段。通过上述教学手段,一方面:再现知识产生的'过程,通过多媒体动态演示,突破学生在旧知和新知形成过程中的障碍(静态到动态);另一方面:节省了时间,提高了课堂教学的效率,激发了学生学习的兴趣。

  【教学模式】重点中学实施素质教育的课堂模式“创设情境、激发情感、主动发现、主动发展”。

高中数学说课稿4

  一、教学目标:

  1、知识与技能目标

  ①理解循环结构,能识别和理解简单的框图的功能。

  ②能运用循环结构设计程序框图解决简单的问题。

  2、过程与方法目标

  通过模仿、操作、探索,学习设计程序框图表达,解决问题的过程,发展有条理的思考与表达的能力,提高逻辑思维能力。

  3、情感、态度与价值观目标

  通过本节的自主性学习,让学生感受和体会算法思想在解决具体问题中的意义,增强学生的创新能力和应用数学的意识。

  三、教法分析

  1、教学重点、难点

  重点:理解循环结构,能识别和画出简单的循环结构框图,难点:循环结构中循环条件和循环体的确定。

  2、教法、学法

  本节课我遵循引导发现,循序渐进的思路,采用问题探究式教学。运用多媒体,投影仪辅助。倡导"自主、合作、探究"的学习方式。

  四、教学过程:

  (一)创设情境,温故求新

  引例:写出求的值的一个算法,并用框图表示你的算法。

  此例由学生动手完成,投影展示学生的做法,师生共同点评。鼓励学生一题多解——求创。

  设计引例的目的是复习顺序结构,提出递推求和的方法,导入新课。此环节旨在提升学生的求知欲、探索欲,使学生保持良好、积极的情感体验。

  (二)讲授新课

  1、循序渐进,理解知识

  【1】选择"累加器"作为载体,借助"累加器"使学生经历把"递推求和"转化为"循环求和"的过程,同时经历初始化变量,确定循环体,设置循环终止条件3个构造循环结构的关键步骤。

  (1)将"递推求和"转化为"循环求和"的缘由及转化的方法和途径

  引例"求的值"这个问题的自然求和过程可以表示为:

  用递推公式表示为:

  直接利用这个递推公式构造算法在步骤中使用了共100个变量,计算机执行这样的算法时需要占用较大的内存。为了节省变量,充分体现计算机能以极快的速度进行重复计算的优势,需要从上述递推求和的步骤中提取出共同的结构,即第n步的结果=第(n-1)步的结果+n。若引进一个变量来表示每一步的计算结果,则第n步可以表示为赋值过程。

  (2)""的含义

  利用多媒体动画展示计算机中累加器的工作原理,借助形象直观对知识点进行强调说明

  ①的作用是将赋值号右边表达式的值赋给赋值号左边的变量。

  ②赋值号"="右边的变量""表示前一步累加所得的和,赋值号"="左边的""表示该步累加所得的和,含义不同。

  ③赋值号"="与数学中的等号意义不同。在数学中是不成立的。

  借助"累加器"既突破了难点,同时也使学生理解了中的变化和的含义。

  (3)初始化变量,设置循环终止条件

  由的初始值为0,的值由1增加到100,可以初始化循环变量和设置循环终止条件。

  【2】循环结构的.概念

  根据指定条件决定是否重复执行一条或多条指令的控制结构称为循环结构。

  教师学生一起共同完成引例的框图表示,并由此引出本节课的重点知识循环结构的概念。这样讲解既突出了重点又突破了难点,同时使学生体会了问题的抽象过程和算法的构建过程。还体现了我们研究问题常用的"由特殊到一般"的思维方式。

  2、类比探究,掌握知识

  例1:改造引例的程序框图表示

  ①求的值

  ②求的值

  ③求的值

  ④求的值

  此例可由学生独立思考、回答,师生共同点评完成。

  通过对引例框图的反复改造逐步帮助学生深入理解循环结构,体会用循环结构表达算法,关键要做好三点:①确定循环变量和初始值②确定循环体③确定循环终止条件。

  例2:根据程序框图回答下面的问题

  (1)图中箭头指向①时,输出=______;指向②时输出=_____。

  (2)该程序框图的算法功能是_______________________。

  (3)去掉条件""按程序框图所蕴含的算法,能执行到底吗,若能执行到底,最后输出的结果是什么?图A图B

  对比练习:

  (1)图B输出=_____。

  (2)图A指向②时与图B有何不同?你能得到什么结论?

  可由学生小组讨论,教师巡视,加强对学生的个别指导,再由学生分析。

  例2是写出程序框图的运算结果,及其功能。设计此例的目的是让学生通过类比意识到:①循环结构不能是永无终止的"死循环",一定要在某个条件下终止循环,这就需要条件结构来做出判断,因此,循环结构中一定包含条件结构。②循环结构中语句的顺序对算法的影响。

  (三)自我实践,应用知识

  1、夯实基础:人口预测。现有人口总数是,人口的年增长率是,预测第年人口总数将是多少?用程序框图描述你的算法。

  这是课本上的引例。

  2、巩固提高:

  图(1),图(2),图(3),图(4)是为计算而绘制的程序框图。根据程序框图回答下面的问题:

  ①其中正确的程序框图有哪几个?错误的要指出错在哪里。

  ②错误的程序框图中,按该程序框图所蕴含的算法,能执行到底吗?若能执行到底,最后输出的结果是什么?

  ③根据上面的回答总结出应用循环结构编制程序框图应该注意哪几方面的问题?

  3、沟通发展

  仿照本节课例题,同桌俩人一人编题一人解答。

  通过练习进一步巩固所学知识,培养和提升学生的认知水平。沟通发展,有助于及时查漏补缺,保持学生学习的热情和信心。

  四、课后小结

  ①理解循环结构的逻辑。

  ②明确条件结构与循环结构的区别,联系。

  数学思想方法:算法思想,类比方法

  五、布置作业

  ①课本P19习题1-1A4,5

  ②课外拓展:写出一个求满足的最小正整数的算法并画出相应的程序框图。

  书面作业第一个层次要求所有学生完成,第二个层次,只要求学有余力的同学完成。体现了差异发展教学。

  六、板书设计:

  §1.1.3(3)循环结构

  1、循环过程

  2、循环结构

  3、循环变量、循环条件、循环体

  引例及引例的解答

  小结

  作业

  教学设计的说明:

  建构主义学习理论认为,建构就是认知结构的组建,其过程一般是引导学生从身边的、生活中的实际问题出发,发现问题,思考如何解决问题,进而联系所学的旧知识,首先明确问题的实质,然后总结出新知识的有关概念和规律,形成知识点,把知识点按照逻辑线索和内在联系,串成知识线,再由若干条知识线形成知识面,最后由知识面按照其内容、性质、作用、因果等关系组成综合的知识体。也就是以学生为主体,强调学生对知识的主动探索、主动发现以及学生对所学知识意义的主动建构。本节课的整体设计和处理方法正是基于此理论的体现。

  (一)创设情境,温故求新

  通过引例,复习旧知识,提出新问题,导入新课。

  一题多解,鼓励学生创新。此环节旨在提升学生的求知欲、探索欲,让学生带着问题进入下一环节。使学生保持良好、积极的情感体验。

  (二)讲授新课

  1、循序渐进,探求新知

  学生在教师引导下,在已有探索经验的基础上,借助多媒体的形象直观,共同完成问题的抽象过程和算法的构建过程。体现研究问题常用的"由特殊到一般"的思维方式。

  2、类比探究,掌握知识

  通过类比,自主探究,帮助学生深入理解知识,完善知识结构,提升认知水平。通过小组讨论,实现生生互动,师生互助,丰富情感体验,活跃课堂气氛。

  3、沟通发展,应用知识

  以习题为载体,进一步巩固知识。沟通发展,有助于及时查漏补缺,保持学生学习的热情和信心。

  练习和例题的难度在逐渐加强这也适合学生学习的规律。

  (三)本节小结,布置作业

  1、使学生对本节课的知识有一个全面的认识,掌握知识。为今后学习其它知识打基础。

  2、书面作业第一个层次要求所有学生完成,第二个层次,只要求学有余力的同学完成。体现了差异发展教学。

  3、通过练习,反映学生掌握新知识的程度。教师及时调控、讲评,帮助学生完善知识结构。

高中数学说课稿5

  一、教材分析

  集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。

  本节课主要分为两个部分,一是理解集合的定义及一些基本特征。二是掌握集合与元素之间的关系。

  二、教学目标

  1、学习目标

  (1)通过实例,了解集合的含义,体会元素与集合之间的关系以及理解“属

  于”关系;

  (2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;

  2、能力目标

  (1)能够把一句话一个事件用集合的方式表示出来。

  (2)准确理解集合与及集合内的元素之间的关系。

  3、情感目标

  通过本节的把实际事件用集合的方式表示出来,从而培养数学敏感性,了 解到数学于生活中。

  三、教学重点与难点

  重点 集合的基本概念与表示方法;

  难点 运用集合的两种常用表示方法———列举法与描述法,正确表示一些简单的集合;

  四、教学方法

  (1)本课将采用探究式教学,让学生主动去探索,激发学生的学习兴趣。并分层教学,这样可顾及到全体学生,达到优生得到培养,后进生也有所收获的效果;

  (2)学生在老师的引导下,通过阅读教材,自主学习、思考、交流、讨论和概括,从而完成本节课的教学目标。

  五、学习方法

  (1)主动学习法:举出例子,提出问题,让学生在获得感性认识的同时,

  教师层层深入,启发学生积极思维,主动探索知识,培养学生思维想象 的综合能力。

  (2)反馈补救法:在练习中,注意观察学生对学习的反馈情况,以实现“培

  优扶差,满足不同。”

  六、教学思路

  具体的思路如下

  复习的引入:讲一些集合的相关数学及相关数学家的经历故事!这可以让学生更加了解数学史从何使学生对数学更加感兴趣,有助于上课的效率!因为时间关系这里我就不说相关数学史咯。

  一、 引入课题

  军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?

  在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合,即是一些研究对象的总体。

  二、 正体部分

  学生阅读教材,并思考下列问题:

  (1)集合有那些概念?

  (2)集合有那些符号?

  (3)集合中元素的特性是什么?

  (4)如何给集合分类?

  (一)集合的有关概念

  (1)对象:我们可以感觉到的客观存在以及我们思想中的事物或抽象符号,

  都可以称作对象.

  (2)集合:把一些能够确定的不同的对象看成一个整体,就说这个整体是由

  这些对象的全体构成的集合.

  (3)元素:集合中每个对象叫做这个集合的元素.

  集合通常用大写的拉丁字母表示,如A、B、C、??元素通常用小写的拉丁字母表示,如a、b、c、??

  1. 思考:课本P3的思考题,并再列举一些集合例子和不能构成集合的例子,

  对学生的例子予以讨论、点评,进而讲解下面的问题。

  2、元素与集合的关系

  (1)属于:如果a是集合A的元素,就说a属于A,记作a∈A。(举例)集合A={2,3,4,6,9}a=2 因此我们知道 a∈A

  (2)不属于:如果a不是集合A的元素,就说a不属于A,记作a?A

  要注意“∈”的方向,不能把a∈A颠倒过来写. (举例)

  集合A={3,4,6,9}a=2 因此我们知道a?A

  3、集合中元素的特性

  (1)确定性:给定一个集合,任何对象是不是这个集合的元素是确定的了.

  (2)互异性:集合中的元素一定是不同的.

  (3)无序性:集合中的元素没有固定的顺序.

  4、集合分类

  根据集合所含元素个属不同,可把集合分为如下几类:

  (1)把不含任何元素的集合叫做空集Ф

  (2)含有有限个元素的集合叫做有限集

  (3)含有无穷个元素的集合叫做无限集

  注:应区分?,{?},{0},0等符号的含义

  5、常用数集及其表示方法

  (1)非负整数集(自然数集):全体非负整数的.集合.记作N

  (2)正整数集:非负整数集内排除0的集.记作N*或N+

  (3)整数集:全体整数的集合.记作Z

  (4)有理数集:全体有理数的集合.记作Q

  (5)实数集:全体实数的集合.记作R

  注:(1)自然数集包括数0.

  (2)非负整数集内排除0的集.记作N*或N+,Q、Z、R等其它数集内排

  除0的集,也这样表示,例如,整数集内排除0的集,表示成Z*

  (二)集合的表示方法

  我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。

  (1) 列举法:把集合中的元素一一列举出来,写在大括号内。

  如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},?;

  例1.(课本例1)

  思考2,引入描述法

  说明:集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序。

  (2) 描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。 具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。

  如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},?;

  例2.(课本例2)

  说明:(课本P5最后一段)

  思考3:(课本P6思考) 强调:描述法表示集合应注意集合的代表元素

  {(x,y)|y= x2+3x+2}与 {y|y= x2+3x+2}不同,只要不引起误解,集合的代表元素也可省略,例如:{整数},即代表整数集Z。

  辨析:这里的{ }已包含“所有”的意思,所以不必写{全体整数}。下列写法{实数集},{R}也是错误的。

  说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。

  (三)课堂练习(课本P6练习)

  三、 归纳小结与作业

  本节课从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了集合的常用表示方法,包括列举法、描述法。

  书面作业:习题1.1,第1- 4题

高中数学说课稿6

  一、教材分析

  1.教材所处的地位和作用

  本节课所学内容为算法案例3,主要学习如何给一组数据排序,学习作程序框图和设计程序,通过本节课的学习之后将能使许多复杂的问题在计算机上得到解决,减少工作量。

  2 教学的重点和难点

  重点:两种排序法的排序步骤及计算机程序设计

  难点:排序法的计算机程序设计

  二、教学目标分析

  1.知识与技能目标:

  掌握数据排序的原理能使用直接排序法与冒泡排序法给一组数据排序,进而能设计冒泡排序法的程序框图及程序,理解数学算法与计算机算法的区别,理解计算机对数学的辅助作用。

  2.过程与方法目标:

  能根据排序法中的直接插入排序法与冒泡排序法的步骤,了解数学计算转换为计算机计算的途径,从而探究计算机算法与数学算法的区别,体会计算机对数学学习的辅助作用。

  3.情感,态度和价值观目标

  通过对排序法的学习,领会数学计算与计算机计算的.区别,充分认识信息技术对数学的促进。

  三、教学方法与手段分析

  1.教学方法:充分发挥学生的主体作用和教师的主导作用,采用启发式,并遵循循序渐进的教学原则。这有利于学生掌握从现象到本质,从已知到未知逐步形成概念的学习方法,有利于发展学生抽象思维能力和逻辑推理能力。

  2.教学手段:通过各种教学媒体(计算机)调动学生参与课堂教学的主动性与积极性。

  四、学法分析

  模仿排序法中数字排序的步骤,理解计算机计算的一般步骤,领会数学计算在计算机上实施的要求。

  五、教学过程分析

  一、创设情境

  提出问题:大家考完试后如果要排一下成绩的话,单靠人手该怎样操作呢?如果我们用计算机里的软件电子表格对分数排序就非常简单,那么电子计算机是怎么对数据进行排序的呢?

  通过这个问题,引出我们这节课所要学习的两种排序方法--直接插入排序法与冒泡排序法

  二、探索新知

  这里我先让学生们阅读课本P30-P31的内容,然后回答下面的问题:

  (1)排序法中的直接插入排序法与冒泡排序法的步骤有什么区别?

  (2)冒泡法排序中对5个数字进行排序最多需要多少趟?

  (3)在冒泡法排序对5个数字进行排序的每一趟中需要比较大小几次?

  提出问题,然后让学生们作出回答,这样可以促使学生们能够积极思考,自主地去学习新的知识,而不只是单向的由老师向学生灌输。

  三、知识应用

  例1 用冒泡排序法对数据7,5,3,9,1从小到大进行排序

  (根据刚刚提问所总结的方法完成解题步骤)

  练习:写出用冒泡排序法对5个数据4,11,7,9,6排序的过程中每一趟排序的结果.

  (及时将学到的知识应用,有利于知识的掌握)

  例2 设计冒泡排序法对5个数据进行排序的程序框图.

  (在之前所学习知识的基础上画出程序框图,然后给出一个思考题)

  思考:直接插入排序法的程序框图如何设计?可否把上述程序框图转化为程序?

  (之后出一个练习题,找出思考题的答案)

  练习:用直接插入排序法对例1中的数据从小到大排序,画出程序框图,并转化为程序运行求出最终答案。

  (这里可以使学生们领会数学计算与计算机计算的区别,充分认识信息技术对数学的促进。)

  四、课堂小结:

  (1)数字排序法中的常见的两种排序法直接插入排序法与冒泡排序法它们的排序步骤

  (2两种排序法的计算机程序设计

  (3)注意循环语句的使用与算法的循环次数,对算法进行改进。

  通过小结使学生们对知识有一个系统的认识,突出重点,抓住关键,培养概括能力。

高中数学说课稿7

  教学目标

  A、知识目标:

  掌握等差数列前n项和公式的推导方法;掌握公式的运用。

  B、能力目标:

  (1)通过公式的探索、发现,在知识发生、发展以及形成过程中培养学生观察、联想、归纳、分析、综合和逻辑推理的能力。

  (2)利用以退求进的思维策略,遵循从特殊到一般的认知规律,让学生在实践中通过观察、尝试、分析、类比的方法导出等差数列的求和公式,培养学生类比思维能力。

  (3)通过对公式从不同角度、不同侧面的剖析,培养学生思维的灵活性,提高学生分析问题和解决问题的能力。

  C、情感目标:(数学文化价值)

  (1)公式的发现反映了普遍性寓于特殊性之中,从而使学生受到辩证唯物主义思想的熏陶。

  (2)通过公式的运用,树立学生"大众教学"的思想意识。

  (3)通过生动具体的现实问题,令人着迷的数学史,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感。

  教学重点:

  等差数列前n项和的公式。

  教学难点:

  等差数列前n项和的公式的灵活运用。

  教学方法

  启发、讨论、引导式。

  教具:

  现代教育多媒体技术。

  教学过程

  一、创设情景,导入新课。

  师:上几节,我们已经掌握了等差数列的概念、通项公式及其有关性质,今天要进一步研究等差数列的前n项和公式。提起数列求和,我们自然会想到德国伟大的数学家高斯"神速求和"的故事,小高斯上小学四年级时,一次教师布置了一道数学习题:"把从1到100的自然数加起来,和是多少?"年仅10岁的小高斯略一思索就得到答案5050,这使教师非常吃惊,那么高斯是采用了什么方法来巧妙地计算出来的呢?如果大家也懂得那样巧妙计算,那你们就是二十世纪末的新高斯。(教师观察学生的'表情反映,然后将此问题缩小十倍)。我们来看这样一道一例题。

  例1,计算:1+2+3+4+5+6+7+8+9+10。

  这道题除了累加计算以外,还有没有其他有趣的解法呢?小组讨论后,让学生自行发言解答。

  生1:因为1+10=2+9=3+8=4+7=5+6,所以可凑成5个11,得到55。

  生2:可设S=1+2+3+4+5+6+7+8+9+10,根据加法交换律,又可写成 S=10+9+8+7+6+5+4+3+2+1。

  上面两式相加得2S=11+10+。。。。。。+11=10×11=110

  10个

  所以我们得到S=55,

  即1+2+3+4+5+6+7+8+9+10=55

  师:高斯神速计算出1到100所有自然数的各的方法,和上述两位同学的方法相类似。

  理由是:1+100=2+99=3+98=。。。。。。=50+51=101,有50个101,所以1+2+3+。。。。。。+100=50×101=5050。请同学们想一下,上面的方法用到等差数列的哪一个性质呢?

  生3:数列{an}是等差数列,若m+n=p+q,则am+an=ap+aq。

  二、教授新课(尝试推导)

  师:如果已知等差数列的首项a1,项数为n,第n项an,根据等差数列的性质,如何来导出它的前n项和Sn计算公式呢?根据上面的例子同学们自己完成推导,并请一位学生板演。

  生4:Sn=a1+a2+。。。。。。an—1+an也可写成

  Sn=an+an—1+。。。。。。a2+a1

  两式相加得2Sn=(a1+an)+(a2+an—1)+。。。。。。(an+a1)

  n个

  =n(a1+an)

  所以Sn=(I)

  师:好!如果已知等差数列的首项为a1,公差为d,项数为n,则an=a1+(n—1)d代入公式(1)得

  Sn=na1+ d(II)

  上面(I)、(II)两个式子称为等差数列的前n项和公式。公式(I)是基本的,我们可以发现,它可与梯形面积公式(上底+下底)×高÷2相类比,这里的上底是等差数列的首项a1,下底是第n项an,高是项数n。引导学生总结:这些公式中出现了几个量?(a1,d,n,an,Sn),它们由哪几个关系联系?[an=a1+(n—1)d,Sn==na1+ d];这些量中有几个可自由变化?(三个)从而了解到:只要知道其中任意三个就可以求另外两个了。下面我们举例说明公式(I)和(II)的一些应用。

  三、公式的应用(通过实例演练,形成技能)。

  1、直接代公式(让学生迅速熟悉公式,即用基本量例2、计算:

  (1)1+2+3+。。。。。。+n

  (2)1+3+5+。。。。。。+(2n—1)

  (3)2+4+6+。。。。。。+2n

  (4)1—2+3—4+5—6+。。。。。。+(2n—1)—2n

  请同学们先完成(1)—(3),并请一位同学回答。

  生5:直接利用等差数列求和公式(I),得

  (1)1+2+3+。。。。。。+n=

  (2)1+3+5+。。。。。。+(2n—1)=

  (3)2+4+6+。。。。。。+2n==n(n+1)

  师:第(4)小题数列共有几项?是否为等差数列?能否直接运用Sn公式求解?若不能,那应如何解答?小组讨论后,让学生发言解答。

  生6:(4)中的数列共有2n项,不是等差数列,但把正项和负项分开,可看成两个等差数列,所以

  原式=[1+3+5+。。。。。。+(2n—1)]—(2+4+6+。。。。。。+2n)

  =n2—n(n+1)=—n

  生7:上题虽然不是等差数列,但有一个规律,两项结合都为—1,故可得另一解法:

  原式=—1—1—。。。。。。—1=—n

  n个

  师:很好!在解题时我们应仔细观察,寻找规律,往往会寻找到好的方法。注意在运用Sn公式时,要看清等差数列的项数,否则会引起错解。

  例3、(1)数列{an}是公差d=—2的等差数列,如果a1+a2+a3=12,a8+a9+a10=75,求a1,d,S10。

  生8:(1)由a1+a2+a3=12得3a1+3d=12,即a1+d=4

  又∵d=—2,∴a1=6

  ∴S12=12 a1+66×(—2)=—60

  生9:(2)由a1+a2+a3=12,a1+d=4

  a8+a9+a10=75,a1+8d=25

  解得a1=1,d=3 ∴S10=10a1+=145

  师:通过上面例题我们掌握了等差数列前n项和的公式。在Sn公式有5个变量。已知三个变量,可利用构造方程或方程组求另外两个变量(知三求二),请同学们根据例3自己编题,作为本节的课外练习题,以便下节课交流。

  师:(继续引导学生,将第(2)小题改编)

  ①数列{an}等差数列,若a1+a2+a3=12,a8+a9+a10=75,且Sn=145,求a1,d,n

  ②若此题不求a1,d而只求S10时,是否一定非来求得a1,d不可呢?引导学生运用等差数列性质,用整体思想考虑求a1+a10的值。

  2、用整体观点认识Sn公式。

  例4,在等差数列{an}, (1)已知a2+a5+a12+a15=36,求S16;(2)已知a6=20,求S11。(教师启发学生解)

  师:来看第(1)小题,写出的计算公式S16==8(a1+a6)与已知相比较,你发现了什么?

  生10:根据等差数列的性质,有a1+a16=a2+a15=a5+a12=18,所以S16=8×18=144。

  师:对!(简单小结)这个题目根据已知等式是不能直接求出a1,a16和d的,但由等差数列的性质可求a1与an的和,于是这个问题就得到解决。这是整体思想在解数学问题的体现。

  师:由于时间关系,我们对等差数列前n项和公式Sn的运用一一剖析,引导学生观察当d≠0时,Sn是n的二次函数,那么从二次(或一次)的函数的观点如何来认识Sn公式后,这留给同学们课外继续思考。

  最后请大家课外思考Sn公式(1)的逆命题:

  已知数列{an}的前n项和为Sn,若对于所有自然数n,都有Sn=。数列{an}是否为等差数列,并说明理由。

  四、小结与作业。

  师:接下来请同学们一起来小结本节课所讲的内容。

  生11:1、用倒序相加法推导等差数列前n项和公式。

  2、用所推导的两个公式解决有关例题,熟悉对Sn公式的运用。

  生12:1、运用Sn公式要注意此等差数列的项数n的值。

  2、具体用Sn公式时,要根据已知灵活选择公式(I)或(II),掌握知三求二的解题通法。

  3、当已知条件不足以求此项a1和公差d时,要认真观察,灵活应用等差数列的有关性质,看能否用整体思想的方法求a1+an的值。

  师:通过以上几例,说明在解题中灵活应用所学性质,要纠正那种不明理由盲目套用公式的学习方法。同时希望大家在学习中做一个有心人,去发现更多的性质,主动积极地去学习。

  本节所渗透的数学方法;观察、尝试、分析、归纳、类比、特定系数等。

  数学思想:类比思想、整体思想、方程思想、函数思想等。

  作业:P49:13、14、15、17

高中数学说课稿8

  各位老师你们好!今天我要为大家讲的课题是

  首先,我对本节教材进行一些分析:

  一、教材分析(说教材):

  1. 教材所处的地位和作用:

  本节内容在全书和章节中的作用是:《 》是 中数学教材第 册第 章第 节内容。在此之前学生已学习了 基础,这为过渡到本节的学习起着铺垫作用。本节内容是在 中,占据 的地位。以及为其他学科和今后的学习打下基础。

  2. 教育教学目标:

  根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:

  (1)知识目标: (2)能力目标:通过教学初步培养学生分析问题,解决实际问题,读图分析,收集处理信息,团结协作,语言表达能力以及通过师生双边活动,初步培养学生运用知识的能力,培养学生加强理论联系实际的能力,(3)情感目标:通过 的教学引导学生从现实的生活经历与体验出发,激发学生学习兴趣。

  3. 重点,难点以及确定依据:

  本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点

  重点: 通过 突出重点

  难点: 通过 突破难点

  关键:

  下面,为了讲清重难上点,使学生能达到本节课设定的目标,再从教法和学法上谈谈:

  二、教学策略(说教法)

  1. 教学手段:

  如何突出重点,突破难点,从而实现教学目标。在教学过程中拟计划进行如下操作:教学方法。基于本节课的特点: 应着重采用 的教学方法。

  2. 教学方法及其理论依据:坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,采用学生参与程度高的学导式讨论教学法。在学生看书,讨论的基础上,在老师启发引导下,运用问题解决式教法,师生交谈法,图像信号法,问答式,课堂讨论法。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情。有效的开发各层次学生的潜在智能,力求使学生能在原有的基础上得到发展。同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践。提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的知识和技能,在教学中积极培养学生学习兴趣和动机,明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。

  3. 学情分析:(说学法)

  我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中要特别重视学法的指导。

  (1) 学生特点分析:中学生心理学研究指出,高中阶段是(查同中学生心发展情况)抓住学

  生特点,积极采用形象生动,形式多样的教学方法和学生广泛的积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。生理上表少年好动,注意力易分散

  (2) 知识障碍上:知识掌握上,学生原有的知识 ,许多学生出现知识遗忘,所以应全面系统的去讲述;学生学习本节课的知识障碍, 知识 学生不易理解,所以教学中老师应予以简单明白,深入浅出的.分析。

  (3) 动机和兴趣上:明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力

  最后我来具体谈谈这一堂课的教学过程:

  4. 教学程序及设想:

  (1)由 引入:把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想”继而紧张的沉思,期待录找理由和证明过程。在实际情况下学习可以使学生利用已有的知识与经验,同化和索引出当肖学习的新知识,这样获取知识,不但易于保持,而且易于迁移到陌生的问题情境中。

  (2)由实例得出本课新的知识点

  (3)讲解例题。在讲例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于学生的思维能力。

  (4)能力训练。课后练习使学生能巩固羡慕自觉运用所学知识与解题思想方法。

  (5)总结结论,强化认识。知识性的内容小结,可把课堂教学传授的知识尽快化为学生的素质,数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐步培养学生良好的个性品质目标。

  (6)变式延伸,进行重构,重视课本例题,适当对题目进行引申,使例题的作用更加突出,有利于学生对知识的串联,累积,加工,从而达到举一反三的效果。

  (7)板书

  (8)布置作业。 针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有余力的学生有所提高,

  教学程序:

  课堂结构:复习提问,导入讲授课,课堂练习,巩固新课,布置作业等五部分

高中数学说课稿9

  一、教材地位与作用

  本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。因此,正弦定理的知识非常重要。

  二、学情分析

  作为高一学生,同学们已经掌握了基本的三角函数,特别是在一些特殊三角形中,而学生们在解决任意三角形的边与角问题,就比较困难。

  教学重点:正弦定理的内容,正弦定理的证明及基本应用。

  教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断解的个数。

  根据我的教学内容与学情分析以及教学重难点,我制定了如下几点教学目标

  教学目标分析:

  知识目标:理解并掌握正弦定理的证明,运用正弦定理解三角形。

  能力目标:探索正弦定理的证明过程,用归纳法得出结论。

  情感目标:通过推导得出正弦定理,让学生感受数学公式的整洁对称美和数学的实际应用价值。

  三、教法学法分析

  教法:采用探究式课堂教学模式,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。

  学法:指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。让学生在问题情景中学习,观察,类比,思考,探究,动手尝试相结合,增强学生由特殊到一般的数学思维能力,锲而不舍的求学精神。

  四、教学过程

  (一)创设情境,布疑激趣

  “兴趣是最好的老师”,如果一节课有个好的开头,那就意味着成功了一半,本节课由一个实际问题引入,“工人师傅的一个三角形的模型坏了,只剩下如右图所示的部分,∠A=47°,∠B=53°,AB长为1m,想修好这个零件,但他不知道AC和BC的长度是多少好去截料,你能帮师傅这个忙吗?”激发学生帮助别人的热情和学习的兴趣,从而进入今天的学习课题。

  (二)探寻特例,提出猜想

  1.激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,发现正弦定理。

  2.那结论对任意三角形都适用吗?指导学生分小组用刻度尺、量角器、计算器等工具对一般三角形进行验证。

  3.让学生总结实验结果,得出猜想:

  在三角形中,角与所对的边满足关系

  这为下一步证明树立信心,不断的使学生对结论的认识从感性逐步上升到理性。

  (三)逻辑推理,证明猜想

  1.强调将猜想转化为定理,需要严格的`理论证明。

  2.鼓励学生通过作高转化为熟悉的直角三角形进行证明。

  3.提示学生思考哪些知识能把长度和三角函数联系起来,继而思考向量分析层面,用数量积作为工具证明定理,体现了数形结合的数学思想。

  4.思考是否还有其他的方法来证明正弦定理,布置课后练习,提示,做三角形的外接圆构造直角三角形,或用坐标法来证明。

  (四)归纳总结,简单应用

  1.让学生用文字叙述正弦定理,引导学生发现定理具有对称和谐美,提升对数学美的享受。

  2.正弦定理的内容,讨论可以解决哪几类有关三角形的问题。

  3.运用正弦定理求解本节课引入的三角形零件边长的问题。自己参与实际问题的解决,能激发学生知识后用于实际的价值观。

  (五)讲解例题,巩固定理

  1.例1:在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形。

  例1简单,结果为唯一解,如果已知三角形两角两角所夹的边,以及已知两角和其中一角的对边,都可利用正弦定理来解三角形。

  2.例2:在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形。

  例2较难,使学生明确,利用正弦定理求角有两种可能。要求学生熟悉掌握已知两边和其中一边的对角时解三角形的各种情形。完了把时间交给学生。

  (六)课堂练习,提高巩固

  1.在△ABC中,已知下列条件,解三角形。

  (1)A=45°,C=30°,c=10cm(2)A=60°,B=45°,c=20cm

  2.在△ABC中,已知下列条件,解三角形。

  (1)a=20cm,b=11cm,B=30°(2)c=54cm,b=39cm,C=115°

  学生板演,老师巡视,及时发现问题,并解答。

  (七)小结反思,提高认识

  通过以上的研究过程,同学们主要学到了那些知识和方法?你对此有何体会?

  1.用向量证明了正弦定

  理,体现了数形结合的数学思想。

  2.它表述了三角形的边与对角的正弦值的关系。

  3.定理证明分别从直角、锐角、钝角出发,运用分类讨论的思想。

  (从实际问题出发,通过猜想、实验、归纳等思维方法,最后得到了推导出正弦定理。我们研究问题的突出特点是从特殊到一般,我们不仅收获着结论,而且整个探索过程我们也掌握了研究问题的一般方法。在强调研究性学习方法,注重学生的主体地位,调动学生积极性,使数学教学成为数学活动的教学。)

  (八)任务后延,自主探究

  如果已知一个三角形的两边及其夹角,要求第三边,怎么办?发现正弦定理不适用了,那么自然过渡到下一节内容,余弦定理。布置作业,预习下一节内容。

高中数学说课稿10

  一、教材分析

  1、《指数函数》在教材中的地位、作用和特点

  《指数函数》是人教版高中数学(必修)第一册第二章“函数”的第六节内容,是在学习了《指数》一节内容之后编排的。通过本节课的学习,既可以对指数和函数的概念等知识进一步巩固和深化,又可以为后面进一步学习对数、对数函数尤其是利用互为反函数的图象间的关系来研究对数函数的性质打下坚实的概念和图象基础,又因为《指数函数》是进入高中以后学生遇到的第一个系统研究的函数,对高中阶段研究对数函数、三角函数等完整的函数知识,初步培养函数的应用意识打下了良好的学习基础,所以《指数函数》不仅是本章《函数》的重点内容,也是高中学段的主要研究内容之一,有着不可替代的重要作用。

  此外,《指数函数》的知识与我们的日常生产、生活和科学研究有着紧密的联系,尤其体现在细胞分裂、贷款利率的计算和考古中的年代测算等方面,因此学习这部分知识还有着广泛的现实意义。本节内容的特点之一是概念性强,特点之二是凸显了数学图形在研究函数性质时的重要作用。

  2、教学目标、重点和难点

  通过初中学段的学习和高中对集合、函数等知识的系统学习,学生对函数和图象的关系已经构建了一定的认知结构,主要体现在三个方面:

  知识维度:对正比例函数、反比例函数、一次函数,二次函数等最简单的函数概念和性质已有了初步认识,能够从初中运动变化的角度认识函数初步转化到从集合与对应的观点来认识函数。

  技能维度:学生对采用“描点法”描绘函数图象的方法已基本掌握,能够为研究《指数函数》的性质做好准备。

  素质维度:由观察到抽象的数学活动过程已有一定的体会,已初步了解了数形结合的思想。

  鉴于对学生已有的知识基础和认知能力的分析,根据《教学大纲》的要求,我确定本节课的教学目标、教学重点和难点如下:

  (1)知识目标:

  ①掌握指数函数的概念;

  ②掌握指数函数的图象和性质;

  ③能初步利用指数函数的概念解决实际问题;

  (2)技能目标:

  ①渗透数形结合的基本数学思想方法

  ②培养学生观察、联想、类比、猜测、归纳的能力;

  (3)情感目标:

  ①体验从特殊到一般的学习规律,认识事物之间的普遍联系与相互转化,培养学生用联系的观点看问题

  ②通过教学互动促进师生情感,激发学生的学习兴趣,提高学生抽象、概括、分析、综合的能力

  ③领会数学科学的应用价值。

  (4)教学重点:指数函数的图象和性质。

  (5)教学难点:指数函数的图象性质与底数a的关系。

  突破难点的关键:寻找新知生长点,建立新旧知识的联系,在理解概念的基础上充分结合图象,利用数形结合来扫清障碍。

  二、教法设计

  由于《指数函数》这节课的特殊地位,在本节课的教法设计中,我力图通过这一节课的教学达到不仅使学生初步理解并能简单应用指数函数的知识,更期望能引领学生掌握研究初等函数图象性质的一般思路和方法,为今后研究其它的.函数做好准备,从而达到培养学生学习能力的目的,我根据自己对“诱思探究”教学模式和“情景式”教学模式的认识,将二者结合起来,主要突出了几个方面:

  1、创设问题情景。按照指数函数的在生活中的实际背景给出两个实例,充分调动学生的学习兴趣,激发学生的探究心理,顺利引入课题,而这两个例子又恰好为研究指数函数中底数大于1和底数大于0小于1的图象做好了准备。

  2、强化“指数函数”概念。引导学生结合指数的有关概念来归纳出指数函数的定义,并向学生指出指数函数的形式特点,请学生思考对于底数a是否需要限制,如不限制会有什么问题出现,这样避免了学生对于底数a范围分类的不清楚,也为研究指数函数的图象做了“分类讨论”的铺垫。

  3、突出图象的作用。在数学学习过程中,图形始终使我们需要借助的重要辅助手段。一位数学家曾经说过“数离形时少直观,形离数时难入微”,而在研究指数函数的性质时,更是直接由图象观察得出性质,因此图象发挥了主要的作用。

  4、注意数学与生活和实践的联系。数学的本质是来源于生活,服务于实践。在课堂教学的引入、例题的讲解和课外知识的拓展部分,都介绍了与指数函数息息相关的生活问题,力图使学生了解到数学的基础学科作用,培养学生的数学应用意识。

  三、学法指导

  本节课是在学习完“指数”的概念和运算后编排的,针对学生实际情况,我主要在以下几个方面做了尝试:

  1、再现原有认知结构。在引入两个生活实例后,请学生回忆有关指数的概念,帮助学生再现原有认知结构,为理解指数函数的概念做好准备。

  2、领会常见数学思想方法。在借助图象研究指数函数的性质时会遇到分类讨论、数形结合等基本数学思想方法,这些方法将会贯穿整个高中的数学学习。

  3、在互相交流和自主探

高中数学说课稿11

  一、教材分析

  1.本节课内容在整个教材中的地位和作用

  概括地讲,二次函数的图像在教材中起着承上启下的作用,它的地位体现在它的思想的基础性。一方面,本节课是对初中有关内容的深化,为后面进一步学习二次函数的性质打下基础;另一方面,二次函数解析式中的系数由常数转变为参数,使学生对二次函数的图像由感性认识上升到理性认识,能培养学生利用数形结合思想解决问题的能力。

  2.教学目标定位

  根据教学大纲要求、新课程标准精神,我确定了三个层面的教学目标。

  (1)基础知识与能力目标:理解二次函数的图像中a、b、c、k、h的作用,能熟练地对二次函数的一般式进行配方,会对图像进行平移变换,领会研究二次函数图像的方法,培养学生运用数形结合与等价转化等数学思想方法解决问题的能力,提高运算和作图能力;

  (2)过程和方法:让学生经历作图、观察、比较、归纳的学习过程,使学生掌握类比、化归等数学思想方法,养成即能自主探索,又能合作探究的良好学习习惯;

  (3)情感、态度和价值观:在教学中渗透美的教育,渗透数形结合的思想,让学生在数学活动中学会与人相处,感受探索与创造,体验成功的喜悦。

  3.教学重难点

  重点是二次函数各系数对图像和形状的影响,利用二次函数图像平移的特例分析过程,培养学生数形结合的思想和划归思想。难点是图像的平移变换,关键是二次函数顶点式中h、k的正负取值对函数图像平移变换的影响。

  二、教法学法分析

  数学是发展学生思维、培养学生良好意志品质和美好情感的重要学科,在教学中,我们不仅要使学生获得知识、提高解题能力,还要让学生在教师的启发引导下学会学习、乐于学习,感受数学学科的人文思想,感受数学的自然美。为了更好地体现在课堂教学中"教师为主导,学生为主体"的教学关系和"以人为本,以学定教"的教学理念,在本节课的教学过程中,我将紧紧围绕教师组织——启发引导,学生探究——交流发现,组织开展教学活动。

  为此,我设计了5个环节:

  ①创设情景——引入新课;

  ②交流探究——发现规律;

  ③启发引导——形成结论;

  ④训练小结——深化巩固;

  ⑤思维拓展——提高能力。这五个环节环环相扣、层层深入,注重关注整个过程和全体学生,充分调动了学生的参与性。

  三、教学过程分析

  1.创设情景—引入新课

  教学应充分考虑学生的情感和需要,想方设法让学生在学习中树立信心,感受学习乐趣。根据教材内容,我首先出示一道题目,以需要画y=2x?图像为引子,让学生画y=x?和y=2x?图像,进而比较这两个图像的相同点和不同点为背景切入,一方面让学生总结复习已有知识,为后面的学习做好铺垫,另一方面,使学生在自己熟悉的问题中首先获得解题成功的快乐体验,最后引导学生总结出函数y=x?与y=ax?图像的关系,得出本节课的第一个知识点,即二次项系数a决定图像的开口方向和开口大小。

  由浅入深,下面让学生画y=2x,y=2(x+1)与y=2(x+1)+3的图像并寻找它们的联系,再让学生与多媒体课件展示出的图像进行对比,最后总结出图像的变换规律:a决定开口方向、h决定左右平移、k决定上下平移。由于二次函数的重要性,本节课我以考题为背景引入新课,可以提高学生的学习兴趣,吸引学生的课堂注意力,可以让学生实实在在感受到高考题就在我们的课本中,就在我们平常的练习中。

  2.探究交流—发现规律

  从特别到一般是我们发现问题、寻求规律、揭示本质最常用的方法之一。让学生做出y=2x与y=2x+4x-1的图像,再与课件上的图像对比并叙述二者之间的位置关系,得出结论:若二次函数的解析式为y=ax+bx+c,先将其化成y=a(x+h)+k的形式,从而判断出y=ax+bx+c的图像是如何由y=ax变换得到的。在课本第42页例1(1)中要提醒学生注意,在含有参数的解析式y=a(x+h)+k中,顶点坐标应是(-h,k),而不是(h,k)。所以,例1(1)中二次函数f(x)顶点的横坐标是4,即-h=4,h=-4,括号里面就是x-4(这里容易出错)。例1(2)中h、k的值是已知的,只需要确定a的值就可以了。

  3.启发引导—形成结论

  前面的'练习和例题,基本涵盖了二次函数图像平移变换的各种情况,启发并引导了学生将实例的结论进行总结,得出y=x到y=ax,y=ax到y=a(x+h)+k,y=ax到y=ax+bx+c(其中,a均不为0)的图像变化过程,即a>0开口向上,a<0开口向下;h正左移,h负右移;k正上移,k负下移。

  4.练习小结——巩固深化

  为了巩固和加深二次函数y=ax?+bx+c中的a.b.c对图像的影响,接下来组织学生进行课题练习,完成课本44页练习1—3题。上课时间有限,为保证在完成教学任务的前提下,让学生充分练习和讨论,我一直坚持让学生规范使用演草本。课堂上需要学生动手演练的地方不急于安排学生马上讨论,而是让学生思考后将自己的答案整齐地写在演草本上,然后小组内四人相互交换进行量分,因为是在课堂上,量分标准要简单,我要求用30分的整分制。用时较短10分,书写整齐规范10分,解答正确10分。

  这个过程中会产生学生之间的三次竞争:

  ①看谁解的快、用时最短;

  ②看谁书写的整齐;

  ③看谁做的对。

  这个自己做和批阅的过程,也是学生对题目加深理解的过程。量完分后组织学生对不同解法进行探究,这又会产生学生之间的第四次竞争,看谁的方法简便,思维更严密。当然做题时有的学生会做的很快,可以让他们判断黑板上演示学生的解题得分情况,这也促进在黑板上演示的学生同下面学生之间的竞争。

  这个充满竞争的过程其实也是教师通过演草本无形引导学生解决问题、收获新知的过程,也是一个培养学生探究精神和思考、比较、辨别能力的过程,使学生成为学习上的主人。这样每节课都有竞争,能使学生发现自己在学习的长处,增强了自己的自信心,切实感受到了学习的乐趣,课堂才能真正的活起来。考试中,成绩必然会逐步提高,能避免现在我们教学中学生"考试什么都不会,考完后什么都会"以及阅卷中发现的学生书写凌乱的通病,经过长期这样的练习,每个学生练就了快思考、求准确、写整齐的能力。

  5.延伸拓广——提高能力

  课堂教学既要面对全体学生,又应关注学生的个体差异,体现分类推进,分层教学原则。为此,我设计了一个提高练习题组,共两道被选题目,以供学有余力的学生能够更好的展示自己的解题能力,取得进一步提高。

高中数学说课稿12

  一、说教材

  1.内容分析:本节课是“反比例函数”的第一节课,是继正比例函数、一次函数之后,二次函数之前的又一类型函数,本节课主要通过丰富的生活事例,让学生归纳出反比例函数的概念,并进一步体会函数是刻画变量之间关系的数学模型,从中体会函数的模型思想。因此本节课重点是理解和领悟反比例函数的概念,所渗透的数学思想方法有:类比,转化,建模。

  2.学情分析:对八年级学生来说,虽然他们已经对函数,正比例函数,一次函数的概念、图象、性质以及应用有所掌握,但他们面对新的一次函数时,还可能存在一些思维障碍,如学生不能准确地找出变量之间的自变量和因变量,以及如何从事例中领悟和总结出反比例函数的概念,因此,本节课的难点是理解和领悟反比例函数的概念。

  二、说教学目标

  根据本人对《数学课程标准》的理解与分析,考虑学生已有的认知结构、心理特征,我把本课的目标定为:

  1.从现实的情境和已有的知识经验出发,讨论两个变量之间的相依关系,加深对函数概念的理解。

  2.经历抽象反比例函数概念的过程,领会反比例函数的'意义,理解反比例函数的概念。

  三、说教法

  本节课从知识结构呈现的角度看,为了实现教学目标,我建立了“创设情境→建立模型→解释知识→应用知识”的学习模式,这种模式清晰地再现了知识的生成与发展的过程,也符合学生的认知规律。于是,从教学内容的性质出发,我设计了如下的课堂结构:创设出电流、行程等情境问题让学生发现新知,把上述问题进行类比,导出概念,获得新知,最后总结评价、内化新知。

  四、说学法

  我认为学生将实际问题转化成函数的能力是有限的,所以我借助多媒体辅助教学,指导学生通过类比、转化、直观形象的观察与演示,亲身经历函数模型的转化过程,为学生攻克难点创造条件,同时考虑到本课的重点是反比例函数概念的教学,也考虑到概念教学要从大量实际出发,通过事例帮助完成定义。

  好学教育:

  因此,我采用了“问题式探究法”的教法,利用多媒体设置丰富的问题情境,让学生的思维由问题开始,到问题深化,让学生的思维始终处于积极主动的状态,并随着问题的深入而跳跃。

高中数学说课稿13

尊敬的各位考官:

  大家好,我是今天的X号考生,今天我说课的题目是《正弦定理》。

  新课标指出:高中教育属于基础教育,具有基础性,且具有多样性与选择性,使不同的学生在数学上得到不同的发展。今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。

  一、说教材

  教师对教材的掌握程度,是评判一位教师是否能上好一堂课的基本标准。在正式内容开始之前,我要先谈一谈对教材的理解。

  《正弦定理》是人教A版必修5第一章第一节的内容,其主要内容是正弦定理及其应用。此前学习了三角函数的相关知识,且积累很多的证明、推导的经验,为本节课的学习都起到了一定的铺垫作用。本节课的学习,也为以后学习和解决生活中的一些问题提供帮助。因此本节的学习有着极其重要的地位。

  二、说学情

  合理把握学情是上好一堂课的基础,下面我来谈谈学生的实际情况。

  这一阶段的学生已经具备了一定的分析问题、解决问题的能力,且在知识方面也有了一定的积累。所以,教学中,利用学生的特点以及原有经验进行教学,增强学生的课堂参与度。

  三、说教学目标

  根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:

  (一)知识与技能

  能证明正弦定理,并能利用正弦定理解决实际问题。

  (二)过程与方法

  通过正弦定理的推导过程,提高分析问题、解决问题的能力。

  (三)情感、态度与价值观

  在正弦定理的推导过程中,感受数学的严谨,提升对数学的兴趣。

  四、说教学重难点

  我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点为:正弦定理。难点:正弦定理的证明。

  五、说教法和学法

  现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用讲授法、启发法、练习法、小组合作、自主探究等教学方法。

  六、说教学过程

  在这节课的教学过程中,我注重突出重点,条理清晰,紧凑合理。各项活动的安排也注重互动、交流,最大限度的调动学生参与课堂的积极性、主动性。

  (一)导入新课

  首先是导入环节,我将采用温故知新的导入方式。

  复习初中学习的任意三角形中的边和角存在什么样的关系。在学生回顾之后,再提问:能否得到这个边、角关系准确量化的表示?引出本节课学习的内容——正弦定理。

  通过温故知新的导入方式,能为本节课的后续的教学做好铺垫。

  (二)讲解新知

  接下来是新课讲授环节,我将分为四部分,分别为在直角三角形中推导正弦定理、在锐角三角形中推导正弦定理、在钝角三角形中推导正弦定理以及正弦定理的应用。

  素的过程叫做解三角形。

  在介绍完正弦定理后,接下来介绍正弦定理的应用。通过提问:我们利用正弦定理可以解决一些怎样的解三角形问题呢?总结:如果已知三角形的`任意两个角与一边,由三角形内角和定理,可以计算出三角形的另一角,并由正弦定理计算出三角形的另两边;如果已知三角形的任意两边与其中一边的对角,应用正弦定理,可以计算出另一边的对角的正弦值,进而确定这个角和三角形其他的边和角。

  整节课,本着学生为主体,教师为主导的设计理念,结合教学内容和学生的特点,利用学生已有的知识经验,采用层次性的问题,一步步引导学生思考交流、发现知识。并且在整个过程中,讲授法、引导法、合作探究等多种教学方法的使用,不但让学生学会知识,也培养学生的学习能力。通过这样的设计,提升学生学习数学的信心,提高学习数学的兴趣。

  (三)课堂练习

高中数学说课稿14

  一、教学理念

  新的课程标准明确指出"数学是人类文化的重要组成部分,构成了公民所必须具备的一种基本素质."其含义就是:我们不仅要重视数学的应用价值,更要注重其思维价值和人文价值.

  因此,创造性地使用教材,积极开发、利用各种教学资源,创设教学情境,让学生通过主动参与、积极思考、与人合作交流和创新等过程,获得情感、能力、知识的全面发展.本节课力图打破常规,充分体现以学生为本,全方位培养、提高学生素质,实现课程观念、教学方式、学习方式的转变.

  二、教材分析

  三角函数是中学数学的重要内容之一,它既是解决生产实际问题的工具,又是学习高等数学及其它学科的基础.本节课是在学习了任意角的三角函数,两角和与差的三角函数以及正、余弦函数的图象和性质后,进一步研究函数y=Asin(ωxφ)的简图的画法,由此揭示这类函数的图象与正弦曲线的关系,以及A、ω、φ的物理意义,并通过图象的变化过程,进一步理解正、余弦函数的性质,它是研究函数图象变换的一个延伸,也是研究函数性质的一个直观反映.共3课时,本节课是继学习完振幅、周期、初相变换后的第二课时.

  本节课倡导学生自主探究,在教师的引导下,通过五点作图法正确找出函数y=sinx到y=sin(ωxφ)的图象变换规律是本节课的重点.

  难点是对周期变换、相位变换先后顺序调整后,将影响图象平移量的理解.因此,分析清不管哪种顺序变换,都是对一个字母x而言的变换成为突破本节课教学难点的关键.

  依据《课标》,根据本节课内容和学生的实际,我确定如下教学目标.

  三、教学目标

  [知识与技能]

  通过"五点作图法"正确找出函数y=sinx到y=sin(ωxφ)的图象变换规律,能用五点作图法和图象变换法画出函数y=Asin(ωxφ)的简图,能举一反三地画出函数y=Asin(ωxφ)+k和y=Acos(ωxφ)的简图.

  [过程与方法]

  通过引导学生对函数y=sinx到y=sin(ωxφ)的图象变换规律的探索,让学生体会到由简单到复杂,特殊到一般的化归思想;并通过对周期变换、相位变换先后顺序调整后,将影响图象变换这一难点的突破,让学生学会抓住问题的主要矛盾来解决问题的基本思想方法.

  [情感态度与价值观]

  课堂中,通过对问题的自主探究,培养学生的独立意识和独立思考能力;小组交流中,学会合作意识;在解决问题的难点时,培养学生解决问题抓主要矛盾的思想.在问题逐步深入的研究中唤起学生追求真理,乐于创新的情感需求,引发学生渴求知识的强烈愿望,树立科学的人生观、价值观.

  四、教学过程(六问三练)

  1、设置情境设计意图:正中"五点作图法"的要害,既复习了旧知,又为学生准确使用本节课将要用到的工具提供必要的保障.

  答案:将ωx看作一个整体,令其分别为0,,?,,2?.

  设计意图:复习巩固已学三种基本变换,同时为导入本节课重难点创设情境.学生回答后,追问一般情况即:A、ω、φ的作用.此时部分学生,特别是基础薄弱和数学表达能力欠缺的学生会出现困难,会因为回答不上而觉得紧张,在不影响突破本节课重难点的前提下,为了避免刚上课就给他们带来心理压力,借助大屏幕以填空题的形式清晰展现答案.

  答案:分别把正弦曲线上所有点的纵坐标伸长到原来的3倍(横坐标不变);横坐标缩短为原来的(纵坐标不变);向左平行移动个单位长度得到的.

  2、探求、研究

  新的教学理念下,要勇于,更要善于把问题抛给学生,激发学生探求知识的强烈欲望和创新意识.设计意图:

  (1)激发兴趣、提供平台学生在碰到这个问题时,很感兴趣,因为它和问题2很类似,因此首先会猜想"左移个单位长度",为了验证自己的想法,通过"五点作图法"画图分析,最后会发现猜想是错误的,于是更加激发他们强烈的好奇心和求知欲,很快掀起本节课的第一次高潮,给学生搭建起一个动手探究、实践的平台.

  (2)分化难点、突出重点探求函数y=sinx到y=sin(ωxφ)的图象变换规律是本节课的重难点,要分化此难点,可分步探求函数:

  ①y=sinωx到y=sin(ωxφ)

  ②y=sin(xφ)到y=sin(ωxφ)

  的图象变换规律.学生最难理解和最易出错的就是理解①y=sinωx到y=sin(ωxφ)的图象变换规律,因此从特例出发,具有直观性,便于学生操作,从而达到分化难点、突出重点的目的.

  (3)探究本质、寻求关键点当学生找到此题的答案后,自然就会思考这个问题的实质是什么?突破此难点的关键是什么?因此着眼x的变化,把ωxφ变形为ω(),看清是把x变成了就是解决问题的关键点.

  (4)培养学生的合作意识和合作能力在本题的解决过程中,首先要求学生独立思考,然后引导学生小组交流讨论,最后让小组代表总结,并汇报探求过程中得到的经验或出现的问题以及采取的具体措施和效果,再由组员或其他同学补充、质疑、评价或解答,培养学生的合作意识和合作能力.

  突破措施:

  (1)分析特殊点坐标、寻求x变化引导学生分析函数y=sin2x和y=sin(2x)在一个对应的周期内,y取同一数值如:时,x分别取,0,因此首先确定是左移个单位长度,其根本原因是x变成了.

  (2)课件演示合作交流完成后,通过课件直观演示,并引导学生总结规律,从而突出本节课的重点并突破难点.

  (3)巩固练习

  (4)独立完成与合作交流相结合

  在问题3得以充分解决的前提下,此问题迎刃而解.设计意图:通过实例综合以上两种变换,重点是比较两种方法平移量的区别和导致这一现象的根本原因,即x的变化,并由此导出一般规律.

  方法有二:

  ①先平移变换再周期变换

  先把函数y=sinx的图象向左平移个单位长度,x变成了x,得到y=sin(x)的图象;再把所得图象横向收缩为原来的,x变成了2x,得到y=sin(2x)的图象.

  ②先周期变换再平移变换

  先把函数y=sinx的图象横向收缩为原来的,x变成了2x,得到y=sin2x的图象;再把所得图象向左平移个单位长度,x变成了x,得到y=sin2(x)=sin(2x)的图象.

  升华知识、培养能力设计意图:

  (1)培养学生变换的逆向思维能力;

  (2)通过改变函数名考察学生对变换实质的理解;

  (3)考察变换和使用诱导公式综合能力;

  (4)考察变换和使用辅助角公式综合能力;

  (5)通过抽象函数考察学生对变换实质的理解.学生对这种综合题十分重视,觉得难但经过努力后又可以攻克,因此将满足学生追求真理,乐于创新的.情感需求和渴求知识的强烈愿望,此处将掀起本节课的第二次高潮.

  设计意图:

  在前两个问题解决的基础上,直接找一般规律.

  在分析清楚共有六种变换方法后,得出一般变换方法:

  小结(由学生小结,教师补充、规范):

  本节课主要学习了通过"五点作图法"正确找出函数y=sinx到y=sin(ωxφ)和y=Asin(ωxφ)的图象变换规律.其难点在于正确理解周期变换、相位变换顺序改变后,图象平移的规律.通过本节课的学习,同学们要学会善于探索、合作、独立、自信、创新.

  作业布置:习题4.9的第2题(3)(4),第3、4、5题.

  五.教法、学法

  教法

  教学的目的是以知识为平台,全面提升学生的综合能力.本节课突出体现了以学生能力的发展为主线,应用启发式、讲述式引导学生层层深入,培养学生自主探索以发现问题、分析问题和解决问题的能力,注重利用非智力因素促进学生的学习,实现数学知识价值、思维价值和人文价值的高度统一.

  学法

  在教师的引导下,积极、主动地提出问题,自主分析,再合作交流,达到殊途同归.在思维训练的过程中,感受数学知识的魅力,成为学习的主人.

  六.教学评价

  "评价不是为了证明,而是为了促进",本节课在引导学生探究、合作以及交流的过程中,关注学生的认知心理过程,关注学生的发展,淡化终结性评价和评价的筛选评判功能,强调过程评价、自我评价和评价的教育发展功能,教师适时、公正的评价和学生自我评价促进了学生的自我反思和再认识,尤其是在"问题3,练习2"中思维活跃的学生应给予及时肯定.

  本节课教学注重了层次性,对基础薄弱的学生在"问题1,2,4,5,6和练习1,3"中多给他们创造机会,力争每一个层次的学生都能有机会得到积极的评价,因为这是让他们保持自信,爱好数学,善于钻研从而学会学习的最好培养时机.

高中数学说课稿15

尊敬的各位考官

  大家好,我是今天的X号考生,今天我说课的题目是《指数函数及其性质》。

  新课标指出:高中数学课程对于认识数学与自然界、数学与人类社会的关系,认识数学的科学价值、文化价值,提高提出问题、分析和解决问题的能力,形成理性思维,发展智力和创新意识具有基础性的作用。今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。

  一、说教材

  首先谈谈我对教材的理解。本节课选自人教A版高中数学必修1,主要讲解的内容是指数函数的概念以及它的图象和性质。之前学生已经学习了指数的运算以及指数的相关性质,为本节课奠定了一定的基础,并且之前学习函数性质的方法也为本节课的探究提供了帮助。本节课的学习,为以后研究函数的性质,以及解决生活中的问题起到非常关键性的作用。所以,本节课的`学习对于学生来说至关重要。

  二、说学情

  接下来谈谈学生的实际情况。高中一年级的学生虽然刚刚步入高中,需要适当地适应高中的教学方式,但是学生的观察能力、总结能力、归纳能力、类比能力、抽象等能力已经发展比较成熟。所以教学中,可以将更多的活动交给学生进行探究,还可以进行自主学习,提高各方面的能力。

  三、说教学目标

  根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:

  (一)知识与技能

  理解指数函数的概念和意义,能画出具体指数函数的图象,探索并理解指数函数的单调性和特殊点。

  (二)过程与方法

  在学习的过程中,体会研究具体函数及其性质的过程和方法,体会从具体到一般的过程,学会数形结合的方法。

  (三)情感、态度与价值观

  感受数学与现实生活及其他学科的联系,感受数学的重要性。

  四、说教学重难点

  我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点是:指数函数的概念和性质。教学难点是:用数形结合的方法从具体到一般地探索、概括指数函数的性质。

  五、说教法学法

  现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者、合作者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,我将采用讲授法、练习法、自主探究等教学方法。

  六、说教学过程

  下面我将重点谈谈我对教学过程的设计。

  (一)新课导入

  接下来引导学生类比之前研究函数的方法,明确函数图象在研究性质中起到非常重要的作用,利用数形结合思想研究函数的性质。

  以上过程中充分体现了学生是学习的主体,教师是组织者、引导者、合作者。通过这样的教学,不仅能够让学生有一个轻松愉快的学习氛围,还能够帮助学生提高发现问题、分析问题、解决问题等能力。

【高中数学说课稿】相关文章:

高中数学说课稿07-30

高中数学《圆的标准方程》说课稿12-26

高中数学的华体会可以注销账号不 05-21

高中数学华体会可以注销账号不 03-05

高中数学教案04-13

高中数学教学总结06-20

高中数学华体会可以注销账号不 08-02

高中数学教学总结11-24

(优)高中数学华体会可以注销账号不 07-05

高中数学的华体会可以注销账号不 优秀02-22

Baidu
map